pandas Panda 的数据框将一列拆分为多列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/38840460/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 01:46:08  来源:igfitidea点击:

Panda's dataframe split a column into multiple columns

pythonpandasdataframe

提问by Emdadul

I have a pandas dataframe looks like as below:

我有一个Pandas数据框,如下所示:

date     |    location          | occurance <br>
------------------------------------------------------
somedate |united_kingdom_london | 5  
somedate |united_state_newyork  | 5   

I want it to transform into

我想让它变成

date     | country        | city    | occurance <br>
---------------------------------------------------
somedate | united kingdom | london  | 5  
---------------------------------------------------
somedate | united state   | newyork | 5     

I am new to Python and after some research I have written following code, but seems to unable to extract country and city:

我是 Python 新手,经过一些研究,我编写了以下代码,但似乎无法提取国家和城市:

df.location= df.location.replace({'-': ' '}, regex=True)
df.location= df.location.replace({'_': ' '}, regex=True)

temp_location = df['location'].str.split(' ').tolist() 

location_data = pd.DataFrame(temp_location, columns=['country', 'city'])

I appreciate your response.

我很感激你的回应。

回答by Merlin

Starting with this:

从这个开始:

df = pd.DataFrame({'Date': ['somedate', 'somedate'],
                   'location': ['united_kingdom_london', 'united_state_newyork'],
                   'occurence': [5, 5]})

Try this:

尝试这个:

df['Country'] = df['location'].str.rpartition('_')[0].str.replace("_", " ")
df['City']    = df['location'].str.rpartition('_')[2]
df[['Date','Country', 'City', 'occurence']]

      Date        Country      City  occurence
0  somedate  united kingdom   london          5
1  somedate    united state  newyork          5

Borrowing idea from @MaxU

借用@MaxU 的想法

df[['Country'," " , 'City']] = (df.location.str.replace('_',' ').str.rpartition(' ', expand= True ))
df[['Date','Country', 'City','occurence' ]]

      Date        Country      City  occurence
0  somedate  united kingdom   london          5
1  somedate    united state  newyork          5

回答by Kartik

Try this:

尝试这个:

temp_location = {}
splits = df['location'].str.split(' ')
temp_location['country'] = splits[0:-1].tolist() 
temp_location['city'] = splits[-1].tolist() 

location_data = pd.DataFrame(temp_location)

If you want it back in the original df:

如果你想要它回到原来的 df:

df['country'] = splits[0:-1].tolist() 
df['city'] = splits[-1].tolist() 

回答by Parfait

Consider splitting the column's string value using rfind()

考虑使用拆分列的字符串值 rfind()

import pandas as pd

df = pd.DataFrame({'Date': ['somedate', 'somedate'],
                   'location': ['united_kingdom_london', 'united_state_newyork'],
                   'occurence': [5, 5]})

df['country'] = df['location'].apply(lambda x: x[0:x.rfind('_')])
df['city'] = df['location'].apply(lambda x: x[x.rfind('_')+1:])

df = df[['Date', 'country', 'city', 'occurence']]
print(df)

#        Date         country     city  occurence
# 0  somedate  united_kingdom   london          5
# 1  somedate    united_state  newyork          5

回答by mgilbert

Something like this works

像这样的工作

import pandas as pd

df = pd.DataFrame({'Date': ['somedate', 'somedate'],
                   'location': ['united_kingdom_london', 'united_state_newyork'],
                   'occurence': [5, 5]})

df.location = df.location.str[::-1].str.replace("_", " ", 1).str[::-1]
newcols = df.location.str.split(" ")
newcols = pd.DataFrame(df.location.str.split(" ").tolist(),
                         columns=["country", "city"])
newcols.country = newcols.country.str.replace("_", " ")
df = pd.concat([df, newcols], axis=1)
df.drop("location", axis=1, inplace=True)
print(df)

         Date  occurence         country     city
  0  somedate          5  united kingdom   london
  1  somedate          5    united state  newyork

You could use regex in the replace for a more complicated pattern but if it's just the word after the last _I find it easier to just reverse the str twice as a hack rather than fiddling around with regular expressions

您可以在替换中使用正则表达式来获得更复杂的模式,但如果它只是最后一个之后的单词,_我发现将 str 反转两次作为一种黑客攻击更容易,而不是摆弄正则表达式

回答by MaxU

I would use .str.extract()method:

我会使用.str.extract()方法:

In [107]: df
Out[107]:
       Date               location  occurence
0  somedate  united_kingdom_london          5
1  somedate   united_state_newyork          5
2  somedate         germany_munich          5

In [108]: df[['country','city']] = (df.location.str.replace('_',' ')
   .....:                             .str.extract(r'(.*)\s+([^\s]*)', expand=True))

In [109]: df
Out[109]:
       Date               location  occurence         country     city
0  somedate  united_kingdom_london          5  united kingdom   london
1  somedate   united_state_newyork          5    united state  newyork
2  somedate         germany_munich          5         germany   munich

In [110]: df = df.drop('location', 1)

In [111]: df
Out[111]:
       Date  occurence         country     city
0  somedate          5  united kingdom   london
1  somedate          5    united state  newyork
2  somedate          5         germany   munich

PS please be aware that it's not possible to parse properly (to distinguish) between rows containing two-words country + one-word city and rows containing one-word country + two-words city (unless you have a full list of countries so you check it against this list)...

PS请注意,无法正确解析(区分)包含两个词国家+一个词城市的行和包含一个词国家+两个词城市的行(除非您有完整的国家/地区列表,因此您请对照此列表进行检查)...