Python 在 sklearn 中保存 MinMaxScaler 模型

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/41993565/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-20 02:01:46  来源:igfitidea点击:

Save MinMaxScaler model in sklearn

pythonmachine-learningscikit-learnnormalization

提问by Luis Ramon Ramirez Rodriguez

I'm using the MinMaxScalermodel in sklearn to normalize the features of a model.

MinMaxScaler在 sklearn 中使用模型来规范化模型的特征。

training_set = np.random.rand(4,4)*10
training_set

       [[ 6.01144787,  0.59753007,  2.0014852 ,  3.45433657],
       [ 6.03041646,  5.15589559,  6.64992437,  2.63440202],
       [ 2.27733136,  9.29927394,  0.03718093,  7.7679183 ],
       [ 9.86934288,  7.59003904,  6.02363739,  2.78294206]]


scaler = MinMaxScaler()
scaler.fit(training_set)    
scaler.transform(training_set)


   [[ 0.49184811,  0.        ,  0.29704831,  0.15972182],
   [ 0.4943466 ,  0.52384506,  1.        ,  0.        ],
   [ 0.        ,  1.        ,  0.        ,  1.        ],
   [ 1.        ,  0.80357559,  0.9052909 ,  0.02893534]]

Now I want to use the same scaler to normalize the test set:

现在我想使用相同的缩放器来规范化测试集:

   [[ 8.31263467,  7.99782295,  0.02031658,  9.43249727],
   [ 1.03761228,  9.53173021,  5.99539478,  4.81456067],
   [ 0.19715961,  5.97702519,  0.53347403,  5.58747666],
   [ 9.67505429,  2.76225253,  7.39944931,  8.46746594]]

But I don't want so use the scaler.fit()with the training data all the time. Is there a way to save the scaler and load it later from a different file?

但我不想一直使用scaler.fit()训练数据。有没有办法保存定标器并稍后从不同的文件加载它?

采纳答案by jlarks32

So I'm actually not an expert with this but from a bit of research and a few helpful links, I think pickleand sklearn.externals.joblibare going to be your friends here.

所以我实际上不是这方面的专家,但通过一些研究和一些有用的链接,我认为pickle并且sklearn.externals.joblib将成为您的朋友。

The package picklelets you save models or "dump" models to a file.

该软件包pickle可让您将模型或“转储”模型保存到文件中。

I think this linkis also helpful. It talks about creating a persistence model. Something that you're going to want to try is:

我认为这个链接也很有帮助。它讨论了创建持久性模型。您想要尝试的是:

# could use: import pickle... however let's do something else
from sklearn.externals import joblib 

# this is more efficient than pickle for things like large numpy arrays
# ... which sklearn models often have.   

# then just 'dump' your file
joblib.dump(clf, 'my_dope_model.pkl') 

Hereis where you can learn more about the sklearn externals.

您可以在此处了解有关 sklearn 外部组件的更多信息。

Let me know if that doesn't help or I'm not understanding something about your model.

如果这没有帮助,或者我不了解您的模型,请告诉我。

Note: sklearn.externals.joblibis deprecated. Install and use the pure joblibinstead

注意:sklearn.externals.joblib已弃用。安装并使用 purejoblib代替

回答by Ivan Vegner

Even better than pickle(which creates much larger files than this method), you can use sklearn's built-in tool:

甚至比pickle(创建比此方法大得多的文件)更好,您可以使用sklearn的内置工具:

from sklearn.externals import joblib
scaler_filename = "scaler.save"
joblib.dump(scaler, scaler_filename) 

# And now to load...

scaler = joblib.load(scaler_filename) 

Note: sklearn.externals.joblibis deprecated. Install and use the pure joblibinstead

注意:sklearn.externals.joblib已弃用。安装并使用 purejoblib代替

回答by Engineero

Just a note that sklearn.externals.joblibhas been deprecated and is superseded by plain old joblib, which can be installed with pip install joblib:

只是一个sklearn.externals.joblib已被弃用并被普通 old 取代的注释,joblib可以安装pip install joblib

import joblib
joblib.dump(my_scaler, 'scaler.gz')
my_scaler = joblib.load('scaler.gz')

Note that file extensions can be anything, but if it is one of ['.z', '.gz', '.bz2', '.xz', '.lzma']then the corresponding compression protocol will be used. Docs for joblib.dump()and joblib.load()methods.

请注意,文件扩展名可以是任何内容,但如果是其中之一,['.z', '.gz', '.bz2', '.xz', '.lzma']则将使用相应的压缩协议。文档joblib.dump()joblib.load()方法。

回答by Psidom

You can use pickle, to save the scaler:

您可以使用pickle, 来保存缩放器:

import pickle
scalerfile = 'scaler.sav'
pickle.dump(scaler, open(scalerfile, 'wb'))

Load it back:

加载回来:

import pickle
scalerfile = 'scaler.sav'
scaler = pickle.load(open(scalerfile, 'rb'))
test_scaled_set = scaler.transform(test_set)

回答by PSN

The best way to do this is to create an ML pipeline like the following:

执行此操作的最佳方法是创建一个如下所示的 ML 管道:

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.externals import joblib


pipeline = make_pipeline(MinMaxScaler(),YOUR_ML_MODEL() )

model = pipeline.fit(X_train, y_train)

Now you can save it to a file:

现在您可以将其保存到文件中:

joblib.dump(model, 'filename.mod') 

Later you can load it like this:

稍后您可以像这样加载它:

model = joblib.load('filename.mod')