Python Scikit-learn GridSearch 给出“ValueError: multiclass format is not supported”错误
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/26210471/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Scikit-learn GridSearch giving "ValueError: multiclass format is not supported" error
提问by theharshest
I'm trying to use GridSearch for parameter estimation of LinearSVC() as follows -
我正在尝试使用 GridSearch 进行 LinearSVC() 的参数估计,如下所示 -
clf_SVM = LinearSVC()
params = {
'C': [0.5, 1.0, 1.5],
'tol': [1e-3, 1e-4, 1e-5],
'multi_class': ['ovr', 'crammer_singer'],
}
gs = GridSearchCV(clf_SVM, params, cv=5, scoring='roc_auc')
gs.fit(corpus1, y)
corpus1 has shape (1726, 7001) and y has shape (1726,)
corpus1 具有形状 (1726, 7001) 并且 y 具有形状 (1726,)
This is a multiclass classification, and y has values from 0 to 3, both inclusive, i.e. there are four classes.
这是一个多类分类,y 的值从 0 到 3,包括 0 到 3,即有四个类。
But this is giving me the following error -
但这给了我以下错误-
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-220-0c627bda0543> in <module>()
5 }
6 gs = GridSearchCV(clf_SVM, params, cv=5, scoring='roc_auc')
----> 7 gs.fit(corpus1, y)
/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.pyc in fit(self, X, y)
594
595 """
--> 596 return self._fit(X, y, ParameterGrid(self.param_grid))
597
598
/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.pyc in _fit(self, X, y, parameter_iterable)
376 train, test, self.verbose, parameters,
377 self.fit_params, return_parameters=True)
--> 378 for parameters in parameter_iterable
379 for train, test in cv)
380
/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
651 self._iterating = True
652 for function, args, kwargs in iterable:
--> 653 self.dispatch(function, args, kwargs)
654
655 if pre_dispatch == "all" or n_jobs == 1:
/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.pyc in dispatch(self, func, args, kwargs)
398 """
399 if self._pool is None:
--> 400 job = ImmediateApply(func, args, kwargs)
401 index = len(self._jobs)
402 if not _verbosity_filter(index, self.verbose):
/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.pyc in __init__(self, func, args, kwargs)
136 # Don't delay the application, to avoid keeping the input
137 # arguments in memory
--> 138 self.results = func(*args, **kwargs)
139
140 def get(self):
/usr/local/lib/python2.7/dist-packages/sklearn/cross_validation.pyc in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters)
1238 else:
1239 estimator.fit(X_train, y_train, **fit_params)
-> 1240 test_score = _score(estimator, X_test, y_test, scorer)
1241 if return_train_score:
1242 train_score = _score(estimator, X_train, y_train, scorer)
/usr/local/lib/python2.7/dist-packages/sklearn/cross_validation.pyc in _score(estimator, X_test, y_test, scorer)
1294 score = scorer(estimator, X_test)
1295 else:
-> 1296 score = scorer(estimator, X_test, y_test)
1297 if not isinstance(score, numbers.Number):
1298 raise ValueError("scoring must return a number, got %s (%s) instead."
/usr/local/lib/python2.7/dist-packages/sklearn/metrics/scorer.pyc in __call__(self, clf, X, y)
136 y_type = type_of_target(y)
137 if y_type not in ("binary", "multilabel-indicator"):
--> 138 raise ValueError("{0} format is not supported".format(y_type))
139
140 try:
ValueError: multiclass format is not supported
回答by user1269942
from:
从:
"Note: this implementation is restricted to the binary classification task or multilabel classification task in label indicator format."
“注意:此实现仅限于标签指示符格式的二元分类任务或多标签分类任务。”
try:
尝试:
from sklearn import preprocessing
y = preprocessing.label_binarize(y, classes=[0, 1, 2, 3])
before you train. this will perform a "one-hot" encoding of your y.
在你训练之前。这将对您的 y 执行“one-hot”编码。
回答by Jordi Colomer
As it has been pointed out, you must first binarize y
正如已经指出的那样,您必须首先进行二值化 y
y = label_binarize(y, classes=[0, 1, 2, 3])
and then use a multiclass learning algorithm like OneVsRestClassifieror OneVsOneClassifier. For example:
然后使用多类学习算法,如OneVsRestClassifier或OneVsOneClassifier。例如:
clf_SVM = OneVsRestClassifier(LinearSVC())
params = {
'estimator__C': [0.5, 1.0, 1.5],
'estimator__tol': [1e-3, 1e-4, 1e-5],
}
gs = GridSearchCV(clf_SVM, params, cv=5, scoring='roc_auc')
gs.fit(corpus1, y)
回答by Nipun kumar goel
Remove scoring='roc_auc'and it will work as roc_auccurve does not support categorical data.
删除scoring='roc_auc'它会起作用,因为roc_auc曲线不支持分类数据。

