Python 如何将索引转换为列表?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/37179155/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
how to convert Index into list?
提问by Sai Rajesh
My index:
我的指数:
Index([u'Newal', u'Saraswati Khera', u'Tohana'], dtype='object')
I have to convert this format into list with following format:
我必须将此格式转换为具有以下格式的列表:
['Newal','SaraswatiKhera','Tohana']
回答by jezrael
You can use tolist
or list
:
您可以使用tolist
或list
:
print df.index.tolist()
print list(df.index)
But the fastest solution is convert np.arry
by values
tolist
(thanks EdChum)
但是,最快的解决方法是转换np.arry
的 (感谢EdChum)values
tolist
print df.index.values.tolist()
Sample:
样本:
import pandas as pd
idx = pd.Index([u'Newal', u'Saraswati Khera', u'Tohana'])
print idx
Index([u'Newal', u'Saraswati Khera', u'Tohana'], dtype='object')
print idx.tolist()
[u'Newal', u'Saraswati Khera', u'Tohana']
print list(idx)
[u'Newal', u'Saraswati Khera', u'Tohana']
If you need encode UTF-8
:
如果您需要编码UTF-8
:
print [x.encode('UTF8') for x in idx.tolist()]
['Newal', 'Saraswati Khera', 'Tohana']
Another solution:
另一种解决方案:
print [str(x) for x in idx.tolist()]
['Newal', 'Saraswati Khera', 'Tohana']
but it would fail if the unicode string characters do not lie in the ascii range.
但如果 unicode 字符串字符不在 ascii 范围内,它将失败。
Timings:
时间:
import pandas as pd
import numpy as np
#random dataframe
np.random.seed(1)
df = pd.DataFrame(np.random.randint(10, size=(3,3)))
df.columns = list('ABC')
df.index = [u'Newal', u'Saraswati Khera', u'Tohana']
print df
print df.index
Index([u'Newal', u'Saraswati Khera', u'Tohana'], dtype='object')
print df.index.tolist()
[u'Newal', u'Saraswati Khera', u'Tohana']
print list(df.index)
[u'Newal', u'Saraswati Khera', u'Tohana']
print df.index.values.tolist()
[u'Newal', u'Saraswati Khera', u'Tohana']
In [90]: %timeit list(df.index)
The slowest run took 37.42 times longer than the fastest. This could mean that an intermediate result is being cached
100000 loops, best of 3: 2.18 μs per loop
In [91]: %timeit df.index.tolist()
The slowest run took 22.33 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 1.75 μs per loop
In [92]: %timeit df.index.values.tolist()
The slowest run took 62.72 times longer than the fastest. This could mean that an intermediate result is being cached
1000000 loops, best of 3: 787 ns per loop