Pandas groupby 两列然后获取值的字典
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/37690092/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 01:20:59 来源:igfitidea点击:
Pandas groupby two columns then get dict for values
提问by Bedi Egilmez
I have a pandas dataframe:
我有一个Pandas数据框:
banned_titles =
TitleId RelatedTitleId
0 89989 32598
1 89989 3085083
2 95281 3085083
when I apply groupby as following
当我按如下方式申请 groupby 时
In [84]: banned_titles.groupby('TitleId').groups
Out[84]: {89989: [0, 1], 95281: [2]}
This is so close but not I want.
这是如此接近,但不是我想要的。
What I want is:
我想要的是:
{89989: [32598, 3085083], 95281: [3085083]}
Is there a way to do this?
有没有办法做到这一点?
回答by MaxU
try this:
尝试这个:
In [8]: x.groupby('TitleId')['RelatedTitleId'].apply(lambda x: x.tolist()).to_dict()
Out[8]: {89989: [32598, 3085083], 95281: [3085083]}
or as series of lists:
或作为一系列列表:
In [10]: x.groupby('TitleId')['RelatedTitleId'].apply(lambda x: x.tolist())
Out[10]:
TitleId
89989 [32598, 3085083]
95281 [3085083]
Name: RelatedTitleId, dtype: object
data:
数据:
In [9]: x
Out[9]:
TitleId RelatedTitleId
0 89989 32598
1 89989 3085083
2 95281 3085083
回答by Merlin
Try list one line (no lambda):
尝试列出一行(无 lambda):
dict(df.groupby('TitleId')['RelatedTitleId'].apply(list))
# {89989: [32598, 3085083], 95281: [3085083]}