Python pandas:查找给定列的百分位统计信息

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/39581893/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 22:29:41  来源:igfitidea点击:

pandas: find percentile stats of a given column

pythonpython-2.7pandasstatistics

提问by Edamame

I have a pandas data frame my_df, where I can find the mean(), median(), mode() of a given column:

我有一个 Pandas 数据框 my_df,我可以在其中找到给定列的 mean()、median()、mode():

my_df['field_A'].mean()
my_df['field_A'].median()
my_df['field_A'].mode()

I am wondering is it possible to find more detailed stats such as 90 percentile? Thanks!

我想知道是否有可能找到更详细的统计数据,例如 90%?谢谢!

回答by stackoverflowuser2010

You can use the pandas.DataFrame.quantile()function, as shown below.

您可以使用pandas.DataFrame.quantile()函数,如下所示。

import pandas as pd
import random

A = [ random.randint(0,100) for i in range(10) ]
B = [ random.randint(0,100) for i in range(10) ]

df = pd.DataFrame({ 'field_A': A, 'field_B': B })
df
#    field_A  field_B
# 0       90       72
# 1       63       84
# 2       11       74
# 3       61       66
# 4       78       80
# 5       67       75
# 6       89       47
# 7       12       22
# 8       43        5
# 9       30       64

df.field_A.mean()   # Same as df['field_A'].mean()
# 54.399999999999999

df.field_A.median() 
# 62.0

# You can call `quantile(i)` to get the i'th quantile,
# where `i` should be a fractional number.

df.field_A.quantile(0.1) # 10th percentile
# 11.9

df.field_A.quantile(0.5) # same as median
# 62.0

df.field_A.quantile(0.9) # 90th percentile
# 89.10000000000001

回答by piRSquared

assume series s

假设系列 s

s = pd.Series(np.arange(100))

Get quantiles for [.1, .2, .3, .4, .5, .6, .7, .8, .9]

获取分位数 [.1, .2, .3, .4, .5, .6, .7, .8, .9]

s.quantile(np.linspace(.1, 1, 9, 0))

0.1     9.9
0.2    19.8
0.3    29.7
0.4    39.6
0.5    49.5
0.6    59.4
0.7    69.3
0.8    79.2
0.9    89.1
dtype: float64

OR

或者

s.quantile(np.linspace(.1, 1, 9, 0), 'lower')

0.1     9
0.2    19
0.3    29
0.4    39
0.5    49
0.6    59
0.7    69
0.8    79
0.9    89
dtype: int32

回答by Edamame

I figured out below would work:

我想出了下面的工作:

my_df.dropna().quantile([0.0, .9])