Python 保留/切片熊猫中的特定列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/15072005/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 13:14:30  来源:igfitidea点击:

keep/slice specific columns in pandas

pythonpandas

提问by bdiamante

I know about these column slice methods:

我知道这些列切片方法:

df2 = df[["col1", "col2", "col3"]]and df2 = df.ix[:,0:2]

df2 = df[["col1", "col2", "col3"]]df2 = df.ix[:,0:2]

but I'm wondering if there is a way to slice columns from the front/middle/end of a dataframe in the same slice without specifically listing each one.

但我想知道是否有一种方法可以在同一切片中从数据帧的前/中/尾切片列,而无需专门列出每个列。

For example, a dataframe dfwith columns: col1, col2, col3, col4, col5 and col6.

例如,df具有列的数据框:col1、col2、col3、col4、col5 和 col6。

Is there a way to do something like this?

有没有办法做这样的事情?

df2 = df.ix[:, [0:2, "col5"]]

df2 = df.ix[:, [0:2, "col5"]]

I'm in the situation where I have hundreds of columns and routinely need to slice specific ones for different requests. I've checked through the documentation and haven't seen something like this. Have I overlooked something?

我的情况是我有数百个列,并且经常需要针对不同的请求对特定的列进行切片。我已经检查了文档,并没有看到类似的东西。我是否忽略了什么?

采纳答案by DSM

IIUC, the simplest way I can think of would be something like this:

IIUC,我能想到的最简单的方法是这样的:

>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.random.randn(5, 10))
>>> df[list(df.columns[:2]) + [7]]
          0         1         7
0  0.210139  0.533249  1.780426
1  0.382136  0.083999 -0.392809
2 -0.237868  0.493646 -1.208330
3  1.242077 -0.781558  2.369851
4  1.910740 -0.643370  0.982876

where the listcall isn't optional because otherwise the Indexobject will try to vector-add itself to the 7.

其中list调用不是可选的,否则Index对象将尝试将自身向量添加到 7.

It would be possible to special-case something like numpy's r_so that

有可能像 numpyr_这样的特殊情况

df[col_[:2, "col5", 3:6]]

would work, although I don't know if it would be worth the trouble.

会起作用,虽然我不知道这是否值得麻烦。

回答by beardc

Not sure exactly what you're asking. If you want the first and last 5 rows of a specific column, you can do something like this

不确定你在问什么。如果您想要特定列的第一行和最后 5 行,您可以执行以下操作

df = pd.DataFrame({'col1': np.random.randint(0,3,1000),
               'col2': np.random.rand(1000),
               'col5': np.random.rand(1000)}) 
In [36]: df['col5']
Out[36]: 
0     0.566218
1     0.305987
2     0.852257
3     0.932764
4     0.185677
...
996    0.268700
997    0.036250
998    0.470009
999    0.361089
Name: col5, Length: 1000 
In [38]: df['col5'][(df.index < 5) | (df.index > (len(df) - 5))]
Out[38]: 
0      0.566218
1      0.305987
2      0.852257
3      0.932764
4      0.185677
996    0.268700
997    0.036250
998    0.470009
999    0.361089
Name: col5

Or, more generally, you could write a function

或者,更一般地说,您可以编写一个函数

In [41]: def head_and_tail(df, n=5):
    ...:     return df[(df.index < n) | (df.index > (len(df) - n))] 
In [44]: head_and_tail(df, 7)
Out[44]: 
     col1      col2      col5
0       0  0.489944  0.566218
1       1  0.639213  0.305987
2       1  0.000690  0.852257
3       2  0.620568  0.932764
4       0  0.310816  0.185677
5       0  0.930496  0.678504
6       2  0.165250  0.440811
994     2  0.842181  0.636472
995     0  0.899453  0.830839
996     0  0.418264  0.268700
997     0  0.228304  0.036250
998     2  0.031277  0.470009
999     1  0.542502  0.361089 

回答by K.-Michael Aye

If your column names have information that you can filter for, you could use df.filter(regex='name*'). I am using this to filter between my 189 data channels from a1_01 to b3_21 and it works fine.

如果您的列名有可以过滤的信息,您可以使用 df.filter(regex='name*')。我正在使用它在从 a1_01 到 b3_21 的 189 个数据通道之间进行过滤,并且工作正常。