Python 如何在不使用 numpy 的情况下将 2D 列表展平为 1D?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/29244286/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
how to flatten a 2D list to 1D without using numpy?
提问by wakeupbuddy
I have a list looks like this:
我有一个看起来像这样的列表:
[[1,2,3],[1,2],[1,4,5,6,7]]
and I want to flatten it into [1,2,3,1,2,1,4,5,6,7]
我想把它压扁成 [1,2,3,1,2,1,4,5,6,7]
is there a light weight function to do this without using numpy?
是否有轻量级功能可以在不使用 numpy 的情况下执行此操作?
采纳答案by Kasramvd
Without numpy ( ndarray.flatten
) one way would be using chain.from_iterable
which is an alternate constructor for itertools.chain
:
如果没有 numpy( ndarray.flatten
),一种方法是使用 chain.from_iterable
which 是 的替代构造函数itertools.chain
:
>>> list(chain.from_iterable([[1,2,3],[1,2],[1,4,5,6,7]]))
[1, 2, 3, 1, 2, 1, 4, 5, 6, 7]
Or as another yet Pythonic approach you can use a list comprehension:
或者作为另一种 Pythonic 方法,您可以使用列表理解:
[j for sub in [[1,2,3],[1,2],[1,4,5,6,7]] for j in sub]
Another functional approach very suitable for short lists could also be reduce
in Python2 and functools.reduce
in Python3 (don't use it for long lists):
另一种非常适合短列表的函数式方法也可以reduce
在 Python2 和functools.reduce
Python3 中使用(不要将它用于长列表):
In [4]: from functools import reduce # Python3
In [5]: reduce(lambda x,y :x+y ,[[1,2,3],[1,2],[1,4,5,6,7]])
Out[5]: [1, 2, 3, 1, 2, 1, 4, 5, 6, 7]
To make it slightly faster you could can use operator.add
, which is built-in, instead of lambda
:
为了使它稍微快一点,您可以使用operator.add
内置的 ,而不是lambda
:
In [6]: from operator import add
In [7]: reduce(add ,[[1,2,3],[1,2],[1,4,5,6,7]])
Out[7]: [1, 2, 3, 1, 2, 1, 4, 5, 6, 7]
In [8]: %timeit reduce(lambda x,y :x+y ,[[1,2,3],[1,2],[1,4,5,6,7]])
789 ns ± 7.3 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [9]: %timeit reduce(add ,[[1,2,3],[1,2],[1,4,5,6,7]])
635 ns ± 4.38 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
benchmark:
基准:
:~$ python -m timeit "from itertools import chain;chain.from_iterable([[1,2,3],[1,2],[1,4,5,6,7]])"
1000000 loops, best of 3: 1.58 usec per loop
:~$ python -m timeit "reduce(lambda x,y :x+y ,[[1,2,3],[1,2],[1,4,5,6,7]])"
1000000 loops, best of 3: 0.791 usec per loop
:~$ python -m timeit "[j for i in [[1,2,3],[1,2],[1,4,5,6,7]] for j in i]"
1000000 loops, best of 3: 0.784 usec per loop
A benchmark on @Will's answer that used sum
(its fast for short list but not for long list) :
使用的@Will 答案的基准测试sum
(对于短名单而言很快,但对于长名单而言不是很快):
:~$ python -m timeit "sum([[1,2,3],[4,5,6],[7,8,9]], [])"
1000000 loops, best of 3: 0.575 usec per loop
:~$ python -m timeit "sum([range(100),range(100)], [])"
100000 loops, best of 3: 2.27 usec per loop
:~$ python -m timeit "reduce(lambda x,y :x+y ,[range(100),range(100)])"
100000 loops, best of 3: 2.1 usec per loop
回答by AlexMayle
This will work in your particular case. A recursive function would work best if you have multiple levels of nested iterables.
这将适用于您的特定情况。如果您有多个级别的嵌套可迭代对象,递归函数将最有效。
def flatten(input):
new_list = []
for i in input:
for j in i:
new_list.append(j)
return new_list
回答by will
For just a list like this, my favourite neat little trick is just to use sum
;
对于这样的列表,我最喜欢的小技巧就是使用sum
;
sum
has an optional argument: sum(iterable [, start])
, so you can do:
sum
有一个可选参数: sum(iterable [, start])
,因此您可以执行以下操作:
list_of_lists = [[1,2,3], [4,5,6], [7,8,9]]
print sum(list_of_lists, []) # [1,2,3,4,5,6,7,8,9]
this works because the +
operator happens to be the concatenation operator for lists, and you've told it that the starting value is []
- an empty list.
这是有效的,因为+
运算符恰好是列表的连接运算符,并且您已经告诉它起始值是[]
- 一个空列表。
but the documentaion for sum
advises that you use itertools.chain
instead, as it's much clearer.
但是文档sum
建议您改用itertools.chain
它,因为它更清晰。