Python:Pandas - 按组删除第一行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/31226142/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:34:06  来源:igfitidea点击:

Python: Pandas - Delete the first row by group

pythonpandas

提问by Plug4

I have the following large dataframe (df) that looks like this:

我有以下大数据框 ( df),如下所示:

    ID     date        PRICE       
1   10001  19920103  14.500    
2   10001  19920106  14.500    
3   10001  19920107  14.500     
4   10002  19920108  15.125     
5   10002  19920109  14.500   
6   10002  19920110  14.500    
7   10003  19920113  14.500 
8   10003  19920114  14.500     
9   10003  19920115  15.000 

Question:What's the most efficient way to delete (or remove) the first row of each ID? I want this:

问题:删除(或移除)每个 ID 的第一行的最有效方法是什么?我要这个:

        ID     date     PRICE       
    2   10001  19920106  14.500    
    3   10001  19920107  14.500     
    5   10002  19920109  14.500   
    6   10002  19920110  14.500    
    8   10003  19920114  14.500     
    9   10003  19920115  15.000 

I can do a loop over each unique IDand remove the first row but I believe this is not very efficient.

我可以对每个唯一ID的行进行循环并删除第一行,但我认为这不是很有效。

回答by Jianxun Li

Another one line code is df.groupby('ID').apply(lambda group: group.iloc[1:, 1:])

另一行代码是 df.groupby('ID').apply(lambda group: group.iloc[1:, 1:])

Out[100]: 
             date  PRICE
ID                      
10001 2  19920106   14.5
      3  19920107   14.5
10002 5  19920109   14.5
      6  19920110   14.5
10003 8  19920114   14.5
      9  19920115   15.0

回答by unutbu

You could use groupby/transformto prepare a boolean mask which is True for the rows you want and False for the rows you don't want. Once you have such a boolean mask, you can select the sub-DataFrame using df.loc[mask]:

您可以使用groupby/transform准备一个布尔掩码,该掩码对于您想要的行为 True,对于您不想要的行为 False。一旦有了这样的布尔掩码,就可以使用df.loc[mask]以下命令选择子数据帧:

import numpy as np
import pandas as pd

df = pd.DataFrame(
    {'ID': [10001, 10001, 10001, 10002, 10002, 10002, 10003, 10003, 10003],
     'PRICE': [14.5, 14.5, 14.5, 15.125, 14.5, 14.5, 14.5, 14.5, 15.0],
     'date': [19920103, 19920106, 19920107, 19920108, 19920109, 19920110,
              19920113, 19920114, 19920115]},
    index = range(1,10)) 

def mask_first(x):
    result = np.ones_like(x)
    result[0] = 0
    return result

mask = df.groupby(['ID'])['ID'].transform(mask_first).astype(bool)
print(df.loc[mask])

yields

产量

      ID  PRICE      date
2  10001   14.5  19920106
3  10001   14.5  19920107
5  10002   14.5  19920109
6  10002   14.5  19920110
8  10003   14.5  19920114
9  10003   15.0  19920115


Since you're interested in efficiency, here is a benchmark:

由于您对效率感兴趣,这里是一个基准:

import timeit
import operator
import numpy as np
import pandas as pd

N = 10000
df = pd.DataFrame(
    {'ID': np.random.randint(100, size=(N,)),
     'PRICE': np.random.random(N),
     'date': np.random.random(N)}) 

def using_mask(df):
    def mask_first(x):
        result = np.ones_like(x)
        result[0] = 0
        return result

    mask = df.groupby(['ID'])['ID'].transform(mask_first).astype(bool)
    return df.loc[mask]

def using_apply(df):
    return df.groupby('ID').apply(lambda group: group.iloc[1:, 1:])

def using_apply_alt(df):
    return df.groupby('ID', group_keys=False).apply(lambda x: x[1:])

timing = dict()
for func in (using_mask, using_apply, using_apply_alt):
    timing[func] = timeit.timeit(
        '{}(df)'.format(func.__name__), 
        'from __main__ import df, {}'.format(func.__name__), number=100)

for func, t in sorted(timing.items(), key=operator.itemgetter(1)):
    print('{:16}: {:.2f}'.format(func.__name__, t))

reports

报告

using_mask      : 0.85
using_apply_alt : 2.04
using_apply     : 3.70

回答by Rriskit

Old but still watched quite often: a much faster solution is nth(0) combined with drop duplicates:

旧但仍然经常观看:更快的解决方案是 nth(0) 结合删除重复项:

def using_nth(df):
    to_del = df.groupby('ID',as_index=False).nth(0)
    return pd.concat([df,to_del]).drop_duplicates(keep=False)

In my system the times for unutbus setting are:

在我的系统中,unutbus 设置的时间是:

using_nth       : 0.43
using_apply_alt : 1.93
using_mask      : 2.11
using_apply     : 4.33