Python Pandas 重采样错误:仅对 DatetimeIndex 或 PeriodIndex 有效

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/30857680/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 09:04:59  来源:igfitidea点击:

Pandas Resampling error: Only valid with DatetimeIndex or PeriodIndex

pythonpandas

提问by Nyxynyx

When using panda's resamplefunction on a DataFrame in order to convert tick data to OHLCV, a resampling error is encountered.

resampleDataFrame 上使用 panda 的函数以将刻度数据转换为 OHLCV 时,会遇到重采样错误。

How should we solve the error?

我们应该如何解决错误?

data = pd.read_csv('tickdata.csv', header=None, names=['Timestamp','Price','Volume']).set_index('Timestamp')
data.head()

enter image description here

在此处输入图片说明

# Resample data into 30min bins
ticks = data.ix[:, ['Price', 'Volume']]
bars = ticks.Price.resample('30min', how='ohlc')
volumes = ticks.Volume.resample('30min', how='sum')

This gives the error:

这给出了错误:

TypeError: Only valid with DatetimeIndex or PeriodIndex

采纳答案by unutbu

Convert the integer timestamps in the index to a DatetimeIndex:

将索引中的整数时间戳转换为 DatetimeIndex:

data.index = pd.to_datetime(data.index, unit='s')

This interprets the integers as seconds since the Epoch.

这将整数解释为自纪元以来的秒数。



For example, given

例如,给定

data = pd.DataFrame(
    {'Timestamp':[1313331280, 1313334917, 1313334917, 1313340309, 1313340309], 
     'Price': [10.4]*3 + [10.5]*2, 'Volume': [0.779, 0.101, 0.316, 0.150, 1.8]})
data = data.set_index(['Timestamp'])
#             Price  Volume
# Timestamp                
# 1313331280   10.4   0.779
# 1313334917   10.4   0.101
# 1313334917   10.4   0.316
# 1313340309   10.5   0.150
# 1313340309   10.5   1.800

data.index = pd.to_datetime(data.index, unit='s')

yields

产量

                     Price  Volume
2011-08-14 14:14:40   10.4   0.779
2011-08-14 15:15:17   10.4   0.101
2011-08-14 15:15:17   10.4   0.316
2011-08-14 16:45:09   10.5   0.150
2011-08-14 16:45:09   10.5   1.800

Then

然后

ticks = data.ix[:, ['Price', 'Volume']]
bars = ticks.Price.resample('30min').ohlc()
volumes = ticks.Volume.resample('30min').sum()

can be computed:

可以计算:

In [368]: bars
Out[368]: 
                     open  high   low  close
2011-08-14 14:00:00  10.4  10.4  10.4   10.4
2011-08-14 14:30:00   NaN   NaN   NaN    NaN
2011-08-14 15:00:00  10.4  10.4  10.4   10.4
2011-08-14 15:30:00   NaN   NaN   NaN    NaN
2011-08-14 16:00:00   NaN   NaN   NaN    NaN
2011-08-14 16:30:00  10.5  10.5  10.5   10.5

In [369]: volumes
Out[369]: 
2011-08-14 14:00:00    0.779
2011-08-14 14:30:00      NaN
2011-08-14 15:00:00    0.417
2011-08-14 15:30:00      NaN
2011-08-14 16:00:00      NaN
2011-08-14 16:30:00    1.950
Freq: 30T, Name: Volume, dtype: float64