Python 将列名从int转换为pandas中的字符串

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/38577126/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 21:08:13  来源:igfitidea点击:

Convert Column Name from int to string in pandas

pythonpandas

提问by Dzung Nguyen

I have a pandas dataframe with mixed column names:

我有一个混合列名的熊猫数据框:

1,2,3,4,5, 'Class'

1,2,3,4,5, '类'

When I save this dataframe to h5file, it says that the performance will be affected due to mixed types. How do I convert the integer to string in pandas?

当我将此数据帧保存到 h5file 时,它​​说由于混合类型,性能会受到影响。如何在熊猫中将整数转换为字符串?

回答by DSM

You can simply use df.columns = df.columns.astype(str):

您可以简单地使用df.columns = df.columns.astype(str)

In [26]: df = pd.DataFrame(np.random.random((3,6)), columns=[1,2,3,4,5,'Class'])

In [27]: df
Out[27]: 
          1         2         3         4         5     Class
0  0.773423  0.865091  0.614956  0.219458  0.837748  0.862177
1  0.544805  0.535341  0.323215  0.929041  0.042705  0.759294
2  0.215638  0.251063  0.648350  0.353999  0.986773  0.483313

In [28]: df.columns.map(type)
Out[28]: 
array([<class 'int'>, <class 'int'>, <class 'int'>, <class 'int'>,
       <class 'int'>, <class 'str'>], dtype=object)

In [29]: df.to_hdf("out.h5", "d1")
C:\Anaconda3\lib\site-packages\pandas\io\pytables.py:260: PerformanceWarning: 
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed-integer,key->axis0] [items->None]

  f(store)
C:\Anaconda3\lib\site-packages\pandas\io\pytables.py:260: PerformanceWarning: 
your performance may suffer as PyTables will pickle object types that it cannot
map directly to c-types [inferred_type->mixed-integer,key->block0_items] [items->None]

  f(store)

In [30]: df.columns = df.columns.astype(str)

In [31]: df.columns.map(type)
Out[31]: 
array([<class 'str'>, <class 'str'>, <class 'str'>, <class 'str'>,
       <class 'str'>, <class 'str'>], dtype=object)

In [32]: df.to_hdf("out.h5", "d1")

In [33]:

回答by Aerin

You can simply use df.columns = df.columns.map(str)

你可以简单地使用 df.columns = df.columns.map(str)

DSM's first answer df.columns = df.columns.astype(str)didn't work for my dataframe. (I got TypeError: Setting dtype to anything other than float64 or object is not supported)

DSM 的第一个答案df.columns = df.columns.astype(str)对我的数据框不起作用。(我收到 TypeError:不支持将 dtype 设置为 float64 或 object 以外的任何内容)