pandas 根据列名拆分pandas数据框

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/32739895/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:54:58  来源:igfitidea点击:

Splitting pandas data frame based on column name

pythonpandas

提问by Segmented

Is there a way to split a pandas data frame based on the column name? As an example consider the data frame has the following columns df = ['A_x', 'B_x', 'C_x', 'A_y', 'B_y', 'C_y']and I want to create two data frames X = ['A_x', 'B_x', 'C_x']and Y = ['A_y', 'B_y', 'C_y'].

有没有办法根据列名拆分Pandas数据框?例如,考虑数据框具有以下列df = ['A_x', 'B_x', 'C_x', 'A_y', 'B_y', 'C_y'],我想创建两个数据框X = ['A_x', 'B_x', 'C_x']Y = ['A_y', 'B_y', 'C_y'].

I know there is a possibility to do this:

我知道有可能这样做:

d = {'A': df.A_x, 'B': df.B_x, 'C': df.B_x}
X = pd.DataFrame (data=d)

but this would not be ideal as in my case I have 2200 columns in df. Is there a more elegant solution?

但这并不理想,因为在我的情况下,我在df. 有没有更优雅的解决方案?

回答by unutbu

You could use df.filter(regex=...):

你可以使用df.filter(regex=...)

import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randn(2, 10),
                  columns='Time A_x A_y A_z B_x B_y B_z C_x C_y C-Z'.split())
X = df.filter(regex='_x')
Y = df.filter(regex='_y')

yields

产量

In [15]: X
Out[15]: 
        A_x       B_x       C_x
0 -0.706589  1.031368 -0.950931
1  0.727826  0.879408 -0.049865

In [16]: Y
Out[16]: 
        A_y       B_y       C_y
0 -0.663647  0.635540 -0.532605
1  0.326718  0.189333 -0.803648