C语言 如何仅使用按位运算符实现 Bitcount?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/3815165/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-02 06:32:52  来源:igfitidea点击:

How to implement Bitcount using only Bitwise operators?

cbit-manipulation

提问by James Raitsev

The task is to implement a bit count logic using only bitwise operators. I got it working fine, but am wondering if someone can suggest a more elegant approach.

任务是仅使用按位运算符实现位计数逻辑。我让它工作正常,但我想知道是否有人可以提出更优雅的方法。

Only Bitwise ops are allowed. No "if", "for" etc

只允许按位操作。没有“如果”、“为”等

int x = 4;

printf("%d\n", x & 0x1);
printf("%d\n", (x >> 1) & 0x1);
printf("%d\n", (x >> 2) & 0x1);
printf("%d\n", (x >> 3) & 0x1);

Thank you.

谢谢你。

回答by iniju

From http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel

来自http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel

unsigned int v; // count bits set in this (32-bit value)
unsigned int c; // store the total here

c = v - ((v >> 1) & 0x55555555);
c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
c = ((c >> 4) + c) & 0x0F0F0F0F;
c = ((c >> 8) + c) & 0x00FF00FF;
c = ((c >> 16) + c) & 0x0000FFFF;

Edit: Admittedly it's a bit optimized which makes it harder to read. It's easier to read as:

编辑:诚然,它有点优化,这使得它更难阅读。更容易阅读为:

c = (v & 0x55555555) + ((v >> 1) & 0x55555555);
c = (c & 0x33333333) + ((c >> 2) & 0x33333333);
c = (c & 0x0F0F0F0F) + ((c >> 4) & 0x0F0F0F0F);
c = (c & 0x00FF00FF) + ((c >> 8) & 0x00FF00FF);
c = (c & 0x0000FFFF) + ((c >> 16)& 0x0000FFFF);

Each step of those five, adds neighbouring bits together in groups of 1, then 2, then 4 etc. The method is based in divide and conquer.

这五个步骤中的每一步都将相邻的位以 1、2、4 等为一组相加。该方法基于分而治之。

In the first step we add together bits 0 and 1 and put the result in the two bit segment 0-1, add bits 2 and 3 and put the result in the two-bit segment 2-3 etc...

在第一步中,我们将第 0 位和第 1 位相加并将结果放在两个位段 0-1 中,将第 2 位和第 3 位相加并将结果放在两个位段中 2-3 等...

In the second step we add the two-bits 0-1 and 2-3 together and put the result in four-bit 0-3, add together two-bits 4-5 and 6-7 and put the result in four-bit 4-7 etc...

第二步,我们将两位 0-1 和 2-3 相加并将结果放入四位 0-3,将两位 4-5 和 6-7 相加并将结果放入四位4-7 等...

Example:

例子:

So if I have number 395 in binary 0000000110001011 (0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1)
After the first step I have:      0000000101000110 (0+0 0+0 0+0 0+1 1+0 0+0 1+0 1+1) = 00 00 00 01 01 00 01 10
In the second step I have:        0000000100010011 ( 00+00   00+01   01+00   01+10 ) = 0000 0001 0001 0011
In the fourth step I have:        0000000100000100 (   0000+0001       0001+0011   ) = 00000001 00000100
In the last step I have:          0000000000000101 (       00000001+00000100       )

which is equal to 5, which is the correct result

等于5,这是正确的结果

回答by Arun

I would use a pre-computed array

我会使用预先计算的数组

uint8_t set_bits_in_byte_table[ 256 ];

The i-th entry in this table stores the number of set bits in byte i, e.g. set_bits_in_byte_table[ 100 ] = 3since there are 3 1bits in binary representation of decimal 100 (=0x64 = 0110-0100).

i此表中的第 -th 条目存储字节中设置的位数i,例如,set_bits_in_byte_table[ 100 ] = 3因为1十进制 100 的二进制表示中有 3位(=0x64 = 0110-0100)。

Then I would try

然后我会尝试

size_t count_set_bits( uint32_t x ) {
    size_t count = 0;
    uint8_t * byte_ptr = (uint8_t *) &x;
    count += set_bits_in_byte_table[ *byte_ptr++ ];
    count += set_bits_in_byte_table[ *byte_ptr++ ];
    count += set_bits_in_byte_table[ *byte_ptr++ ];
    count += set_bits_in_byte_table[ *byte_ptr++ ];
    return count;
}

回答by irudyak

Here's a simple illustration to the answer:

这是答案的简单说明:

a b c d       0 a b c       0 b 0 d    
&             &             +
0 1 0 1       0 1 0 1       0 a 0 c
-------       -------       -------
0 b 0 d       0 a 0 c       a+b c+d

So we have exactly 2 bits to store a + b and 2 bits to store c + d. a = 0, 1 etc., so 2 bits is what we need to store their sum. On the next step we'll have 4 bits to store sum of 2-bit values etc.

所以我们正好有 2 位来存储 a + b 和 2 位来存储 c + d。a = 0、1 等,所以我们需要 2 位来存储它们的总和。在下一步中,我们将有 4 位来存储 2 位值的总和等。

回答by e2-e4

Several interesting solutions here.

这里有几个有趣的解决方案。

If the solutions above are too boring, here is a C recursive version exempt of condition test or loop:

如果上面的解决方案太无聊,这里有一个免条件测试或循环的 C 递归版本:

  int z(unsigned n, int count);
  int f(unsigned n, int count);

  int (*pf[2])(unsigned n, int count) = { z,f };

  int f(unsigned n, int count)
  {
     return (*pf[n > 0])(n >> 1, count+(n & 1));
  }

  int z(unsigned n, int count)
  {
     return count;
  }

  ...
  printf("%d\n", f(my_number, 0));