oracle NVL 或 EXCEPTION NO_DATA_FOUND

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/5571084/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-18 23:17:25  来源:igfitidea点击:

NVL or EXCEPTION NO_DATA_FOUND

sqlperformanceoracleexception-handlingplsql

提问by mcha

i have in a procedure which fills a table the following sql

我在一个填充表的过程中使用了以下 sql

SELECT NVL(SUM(COL1), 0),
       NVL(SUM(COL2), 0)
  INTO v_mytable.COLUMN1,
       v_mytable.COLUMN2
  FROM t1, t2
 WHERE t1.id = t2.id
   AND t1.date = t2.date

also, for 99% of the table rows, those columns = 0 and this query take a long time to be executed when it will return 0 for both columns in most cases.

此外,对于 99% 的表行,这些列 = 0 并且此查询需要很长时间才能执行,因为在大多数情况下它会为两列返回 0。

Is it better to use exception handeling as the following :

使用异常处理是否更好,如下所示:

BEGIN
  SELECT SUM(COL1),
         SUM(COL2)
    INTO v_mytable.COLUMN1,
         v_mytable.COLUMN2
    FROM t1, t2
   WHERE t1.id = t2.id
     AND t1.date = t2.date
EXCEPTION WHEN NO_DATA_FOUND THEN
  v_mytable.COLUMN1 := 0 ;
  v_mytable.COLUMN2 := 0 ;
END;

Thanks.

谢谢。

回答by Justin Cave

Those two blocks do completely different things. Your SELECT statement would not throw a NO_DATA_FOUNDerror if COL1 and/or COL2 were always NULL. It would simply put a NULL in v_mytable.COLUMN1and v_mytable.COLUMN2.

这两个块做完全不同的事情。NO_DATA_FOUND如果 COL1 和/或 COL2 始终为 NULL,则SELECT 语句不会抛出错误。它只会在v_mytable.COLUMN1and 中放入一个 NULL v_mytable.COLUMN2

You could do

你可以做

SELECT SUM(COL1),
       SUM(COL2)
  INTO v_mytable.COLUMN1,
       v_mytable.COLUMN2
  FROM t1, t2
 WHERE t1.id = t2.id
   AND t1.date = t2.date

v_mytable.COLUMN1 := NVL( v_mytable.COLUMN1, 0 );
v_mytable.COLUMN2 := NVL( v_mytable.COLUMN2, 0 );

I wouldn't expect that to be any faster, however.

然而,我不希望这会更快。

回答by cagcowboy

Given the choice between these two, I'd go for the first one.

如果在这两者之间做出选择,我会选择第一个。

I prefer to use exception handlers for genuine exceptions / errors, not control flow.

我更喜欢将异常处理程序用于真正的异常/错误,而不是控制流。

YMMV.

天啊。

回答by tbone

NO_DATA_FOUND would be thrown if no rows were returned, NOT if null values were returned in the actual rows that ARE returned from the query. This would throw NO_DATA_FOUND:

如果没有返回任何行,则将抛出 NO_DATA_FOUND,如果从查询返回的实际行中返回空值,则不会抛出。这将抛出 NO_DATA_FOUND:

select sysdate
into myVariable
from dual
where 1=0;

This would NOT throw NO_DATA_FOUND:

这不会抛出 NO_DATA_FOUND:

select null
into myVariable
from dual;

That said, if you simply want to IGNORE the rows where col1 and col2 are null, then you may consider using collections in pl/sql, and use bulk collect into, something like:

也就是说,如果您只是想忽略 col1 和 col2 为空的行,那么您可以考虑在 pl/sql 中使用集合,并使用批量收集,例如:

select sum(col1) as sum_col1, sum(col2) as sum_col2, col3
bulk collect into v_mytable
FROM t1, t2
 WHERE t1.id = t2.id
   AND t1.date = t2.date
   AND col1 is not null
   AND col2 is not null
GROUP by col3;

No looping, do in one fell swoop. FYI, you would setup v_mytable something like:

没有循环,一举完成。仅供参考,您可以设置 v_mytable 类似于:

declare
  type t_rec is record
  (col1_sum number,
   col2_sum number,
   col3 number);
  v_rec t_rec;

  type t_tab is table of v_rec%type;
  v_mytable t_tab;

begin
...

Later you can loop through v_mytable, which will be only 1% of the original t1,t2 join result (due to the additional not null clauses in query).

稍后您可以循环遍历 v_mytable,它只会是原始 t1,t2 连接结果的 1%(由于查询中的附加非空子句)。

Hope that helps.

希望有帮助。

回答by Rob van Wijk

Your SQL will run a lot faster if you stop joining the rows for which the col values are 0. Below is a small test to prove my point.

如果您停止加入 col 值为 0 的行,您的 SQL 将运行得更快。下面是一个小测试来证明我的观点。

First create two tables with 100,000 rows, where 99% of the rows have their col value set to 0:

首先创建两个包含 100,000 行的表,其中 99% 的行的 col 值设置为 0:

SQL> create table t1 (id,date1,col1)
  2  as
  3   select level
  4        , trunc(sysdate)
  5        , case mod(level,100) when 42 then 42 else 0 end
  6     from dual
  7  connect by level <= 100000
  8  /

Table created.

SQL> create table t2 (id,date2,col2)
  2  as
  3   select level
  4        , trunc(sysdate)
  5        , case mod(level,100) when 42 then 84 else 0 end
  6     from dual
  7  connect by level <= 100000
  8  /

Table created.

Give the cost based optimizer table statistics:

给出基于成本的优化器表统计信息:

SQL> exec dbms_stats.gather_table_stats(user,'t1')

PL/SQL procedure successfully completed.

SQL> exec dbms_stats.gather_table_stats(user,'t2')

PL/SQL procedure successfully completed.

And gather statistics when running queries:

并在运行查询时收集统计信息:

SQL> set serveroutput off
SQL> alter session set statistics_level = all
  2  /

Session altered.

Now your query runs like this:

现在您的查询运行如下:

SQL> SELECT NVL(SUM(t1.COL1), 0)
  2       , NVL(SUM(t2.COL2), 0)
  3    FROM t1
  4       , t2
  5   WHERE t1.id = t2.id
  6     AND t1.date1 = t2.date2
  7  /

NVL(SUM(T1.COL1),0) NVL(SUM(T2.COL2),0)
------------------- -------------------
              42000               84000

1 row selected.

SQL> select * from table(dbms_xplan.display_cursor(null,null,'allstats last'))
  2  /

PLAN_TABLE_OUTPUT
-----------------------------------------------------------------------------------------------------------------
SQL_ID  6q5h7h8ht5232, child number 0
-------------------------------------
SELECT NVL(SUM(t1.COL1), 0)      , NVL(SUM(t2.COL2), 0)   FROM t1      , t2  WHERE t1.id = t2.id    AND
t1.date1 = t2.date2

Plan hash value: 446739472

-----------------------------------------------------------------------------------------------------------------
| Id  | Operation           | Name | Starts | E-Rows | A-Rows |   A-Time   | Buffers |  OMem |  1Mem | Used-Mem |
-----------------------------------------------------------------------------------------------------------------
|   1 |  SORT AGGREGATE     |      |      1 |      1 |      1 |00:00:00.37 |     560 |       |       |          |
|*  2 |   HASH JOIN         |      |      1 |    100K|    100K|00:00:00.24 |     560 |  4669K|  1437K| 7612K (0)|
|   3 |    TABLE ACCESS FULL| T1   |      1 |    100K|    100K|00:00:00.01 |     280 |       |       |          |
|   4 |    TABLE ACCESS FULL| T2   |      1 |    100K|    100K|00:00:00.01 |     280 |       |       |          |
-----------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("T1"."ID"="T2"."ID" AND "T1"."DATE1"="T2"."DATE2")


21 rows selected.

You can see that the HASH JOIN needs to join 100K rows, and this is where most of the time is spent. Now exclude the 0 values:

可以看到HASH JOIN需要join 100K行,大部分时间都花在了这里。现在排除 0 值:

SQL> SELECT NVL(SUM(t1.COL1), 0)
  2       , NVL(SUM(t2.COL2), 0)
  3    FROM t1
  4       , t2
  5   WHERE t1.id = t2.id
  6     AND t1.date1 = t2.date2
  7     and t1.col1 != 0
  8     and t2.col2 != 0
  9  /

NVL(SUM(T1.COL1),0) NVL(SUM(T2.COL2),0)
------------------- -------------------
              42000               84000

1 row selected.

SQL> select * from table(dbms_xplan.display_cursor(null,null,'allstats last'))
  2  /

PLAN_TABLE_OUTPUT
-----------------------------------------------------------------------------------------------------------------
SQL_ID  bjr7wrjx5tjvr, child number 0
-------------------------------------
SELECT NVL(SUM(t1.COL1), 0)      , NVL(SUM(t2.COL2), 0)   FROM t1      , t2  WHERE t1.id = t2.id    AND
t1.date1 = t2.date2    and t1.col1 != 0    and t2.col2 != 0

Plan hash value: 446739472

-----------------------------------------------------------------------------------------------------------------
| Id  | Operation           | Name | Starts | E-Rows | A-Rows |   A-Time   | Buffers |  OMem |  1Mem | Used-Mem |
-----------------------------------------------------------------------------------------------------------------
|   1 |  SORT AGGREGATE     |      |      1 |      1 |      1 |00:00:00.02 |     560 |       |       |          |
|*  2 |   HASH JOIN         |      |      1 |  25000 |   1000 |00:00:00.02 |     560 |  1063K|  1063K| 1466K (0)|
|*  3 |    TABLE ACCESS FULL| T1   |      1 |  50000 |   1000 |00:00:00.01 |     280 |       |       |          |
|*  4 |    TABLE ACCESS FULL| T2   |      1 |  50000 |   1000 |00:00:00.01 |     280 |       |       |          |
-----------------------------------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("T1"."ID"="T2"."ID" AND "T1"."DATE1"="T2"."DATE2")
   3 - filter("T1"."COL1"<>0)
   4 - filter("T2"."COL2"<>0)


23 rows selected.

And you can see that the HASH JOIN now only needs to join 1000 rows, leading to a much faster output.

您可以看到 HASH JOIN 现在只需要连接 1000 行,从而产生更快的输出。

Hope this helps.

希望这可以帮助。

Regards,
Rob.

问候,
罗伯。