pandas 获取在熊猫的列中具有相同值的行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/21231478/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:35:34  来源:igfitidea点击:

Get rows that have the same value across its columns in pandas

pythonpandasdataframe

提问by kentwait

In pandas, given a DataFrame D:

在 Pandas 中,给定一个 DataFrame D:

+-----+--------+--------+--------+   
|     |    1   |    2   |    3   |
+-----+--------+--------+--------+
|  0  | apple  | banana | banana |
|  1  | orange | orange | orange |
|  2  | banana | apple  | orange |
|  3  | NaN    | NaN    | NaN    |
|  4  | apple  | apple  | apple  |
+-----+--------+--------+--------+

How do I return rows that have the same contents across all of its columns when there are three columns or more such that it returns this:

当有三列或更多列时,如何返回在其所有列中具有相同内容的行,以便返回:

+-----+--------+--------+--------+   
|     |    1   |    2   |    3   |
+-----+--------+--------+--------+
|  1  | orange | orange | orange |
|  4  | apple  | apple  | apple  |
+-----+--------+--------+--------+

Note that it skips rows when all values are NaN.

请注意,当所有值都是 NaN 时,它会跳过行。

If this were only two columns, I usually do D[D[1]==D[2]]but I don't know how to generalize this for more than 2 column DataFrames.

如果这只是两列,我通常会这样做,D[D[1]==D[2]]但我不知道如何将其概括为超过 2 列的 DataFrame。

采纳答案by lowtech

Similar to Andy Hayden answer with check if min equal to max (then row elements are all duplicates):

类似于 Andy Hayden 的回答,检查 min 是否等于 max (然后行元素都是重复的):

df[df.apply(lambda x: min(x) == max(x), 1)]

回答by DSM

My entry:

我的条目:

>>> df
        0       1       2
0   apple  banana  banana
1  orange  orange  orange
2  banana   apple  orange
3     NaN     NaN     NaN
4   apple   apple   apple

[5 rows x 3 columns]
>>> df[df.apply(pd.Series.nunique, axis=1) == 1]
        0       1       2
1  orange  orange  orange
4   apple   apple   apple

[2 rows x 3 columns]

This works because calling pd.Series.nuniqueon the rows gives:

这是有效的,因为调用pd.Series.nunique行给出:

>>> df.apply(pd.Series.nunique, axis=1)
0    2
1    1
2    3
3    0
4    1
dtype: int64

Note:this would, however, keep rows which look like [nan, nan, apple]or [nan, apple, apple]. Usually I want that, but that might be the wrong answer for your use case.

注意:然而,这会保留看起来像[nan, nan, apple]或 的行[nan, apple, apple]。通常我想要那个,但这可能是您用例的错误答案。

回答by Andy Hayden

I would check whether each row is equalto its first element:

我会检查每一行是否等于它的第一个元素:

In [11]: df.eq(df[1], axis='index')  # Note: funky broadcasting with df == df[1]
Out[11]: 
      1      2      3
0  True  False  False
1  True   True   True
2  True  False  False
3  True   True   True
4  True   True   True

[5 rows x 3 columns]

If all in the row are True, then all elements in the row are the same:

如果行中的所有元素都为 True,则该行中的所有元素都相同:

In [12]: df.eq(df[1], axis='index').all(1)
Out[12]: 
0    False
1     True
2    False
3     True
4     True
dtype: bool

Restrict just to the rows and optionally dropna:

仅限于行和可选的 dropna:

In [13]: df[df.eq(df[1], axis='index').all(1)]
Out[13]: 
        1       2       3
1  orange  orange  orange
3     NaN     NaN     NaN
4   apple   apple   apple

[3 rows x 3 columns]

In [14]: df[df.eq(df[1], axis='index').all(1)].dropna()
Out[14]: 
        1       2       3
1  orange  orange  orange
4   apple   apple   apple

[2 rows x 3 columns]

回答by Tu Dang

based on DSM's answer, you may want this method:

根据DSM 的回答,您可能需要这种方法:

import pandas as pd

def filter_data(df):
    df = df.dropna(inplace = True)
    df = df[df.apply(pd.Series.nunique, axis=1)]
    return df

回答by Zero

In newer versions of pandas, you can use nunique

在较新版本的Pandas中,您可以使用 nunique

In [815]: df[df.nunique(1).eq(1)]
Out[815]:
        0       1       2
1  orange  orange  orange
4   apple   apple   apple


Details

细节

In [816]: df
Out[816]:
        0       1       2
0   apple  banana  banana
1  orange  orange  orange
2  banana   apple  orange
3     NaN     NaN     NaN
4   apple   apple   apple

In [817]: df.nunique(1)
Out[817]:
0    2
1    1
2    3
3    0
4    1
dtype: int64

In [818]: df.nunique(1).eq(1)
Out[818]:
0    False
1     True
2    False
3    False
4     True
dtype: bool

回答by Woody Pride

You could use set to create a list of the index locations that conform to your rule, and then use that list to slice the data frame. For example:

您可以使用 set 创建符合您规则的索引位置列表,然后使用该列表对数据框进行切片。例如:

import pandas as pd
import numpy as np

D = {0  : ['apple' , 'banana', 'banana'], 1 : ['orange', 'orange', 'orange'], 2: ['banana', 'apple', 'orange'], 3: [np.nan, np.nan, np.nan], 4 : ['apple', 'apple', 'apple']} 
DF = pd.DataFrame(D).T

Equal = [row for row in DF.index if len(set(DF.iloc[row])) == 1]

DF.iloc[Equal]

Note that this excludes the missing value row without you having to expressly exclude missing values. This is because due to the nature of missing values in a series.

请注意,这会排除缺失值行,而无需明确排除缺失值。这是因为系列中缺失值的性质。