Python 熊猫:如果满足 3 列中的条件,则更新值

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/21263020/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 22:25:59  来源:igfitidea点击:

pandas : update value if condition in 3 columns are met

pythonpandas

提问by Eduardo Oliveira

I have a dataframe like this:

我有一个这样的数据框:

In[1]: df
Out[1]:
      A      B       C            D
1   blue    red    square        NaN
2  orange  yellow  circle        NaN
3  black   grey    circle        NaN

and I want to update column D when it meets 3 conditions. Ex:

我想在满足 3 个条件时更新列 D。前任:

df.ix[ np.logical_and(df.A=='blue', df.B=='red', df.C=='square'), ['D'] ] = 'succeed'

It works for the first two conditions, but it doesn't work for the third, thus:

它适用于前两个条件,但不适用于第三个条件,因此:

df.ix[ np.logical_and(df.A=='blue', df.B=='red', df.C=='triangle'), ['D'] ] = 'succeed'

has exactly the same result:

有完全相同的结果:

In[1]: df
Out[1]:
      A      B       C            D
1   blue    red    square        succeed
2  orange  yellow  circle        NaN
3  black   grey    circle        NaN

回答by Tim

You could try this instead:

你可以试试这个:

df[ (df.A=='blue') & (df.B=='red') & (df.C=='square') ]['D'] = 'succeed'

回答by waitingkuo

The third parameter of logical_andis to assign the array used to store the result.

logical_and的第三个参数是分配用于存储结果的数组。

Currently, the method @TimRich provided might be the best. In pandas 0.13 (in development), there's a new experimental querymethod. Try it!

目前,@TimRich 提供的方法可能是最好的。在 pandas 0.13(开发中)中,有一种新的实验性查询方法。尝试一下!

回答by Praveen

Using:

使用:

df[ (df.A=='blue') & (df.B=='red') & (df.C=='square') ]['D'] = 'succeed'

gives the warning:

给出警告:

/usr/local/lib/python2.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

A better way of achieving this seems to be:

实现这一目标的更好方法似乎是:

df.loc[(df['A'] == 'blue') & (df['B'] == 'red') & (df['C'] == 'square'),'D'] = 'M5'

回答by theSanjeev

You could try:

你可以试试:

df['D'] = np.where((df.A=='blue') & (df.B=='red') & (df.C=='square'), 'succeed')

This answer might provide a detailed answer to the your question: Update row values where certain condition is met in pandas

此答案可能会为您的问题提供详细的答案: 在熊猫中满足特定条件时更新行值

回答by Alex Schwab

This format might have been implied in the new answers, but the following bit actually worked for me.

新答案中可能暗示了这种格式,但以下内容实际上对我有用。

df['D'].loc[(df['A'] == 'blue') & (df['B'] == 'red') & (df['C'] == 'square')] = 'succeed'

df['D'].loc[(df['A'] == 'blue') & (df['B'] == 'red') & (df['C'] == 'square')] = 'succeed'