Python Pandas Group By Error 'Index' 对象没有属性 'labels'
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/42400773/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python Pandas Group By Error 'Index' object has no attribute 'labels'
提问by Uasthana
Hi guys is am getting this error:
嗨,伙计们,我收到了这个错误:
'Index' object has no attribute 'labels'
The traceback looks like this:
回溯看起来像这样:
Traceback (most recent call last):
File "<ipython-input-23-e0f428cee427>", line 1, in <module>
df_top_f = k.groupby(['features'])['features'].count().unstack('features')
File "C:\Anaconda3\lib\site-packages\pandas\core\series.py", line 2061, in unstack
return unstack(self, level, fill_value)
File "C:\Anaconda3\lib\site-packages\pandas\core\reshape.py", line 405, in unstack
fill_value=fill_value)
File "C:\Anaconda3\lib\site-packages\pandas\core\reshape.py", line 90, in __init__
self.lift = 1 if -1 in self.index.labels[self.level] else 0
AttributeError: 'Index' object has no attribute 'labels'
While running the following code
在运行以下代码时
df_top_f = df.groupby(['features'])['features'].count().unstack('features')
df has the following structure:
df 具有以下结构:
features
Ind
0 Doorman
1 Cats Allowed
2 Doorman
3 Cats Allowed
4 Dogs Allowed
5 Doorman
df.index looks like this:
df.index 看起来像这样:
RangeIndex(start=0, stop=267906, step=1, name='Ind')
Looks very straight forward but I can't understand why I am getting this error. Please help
看起来很直接,但我不明白为什么我会收到这个错误。请帮忙
采纳答案by miradulo
Perhaps not the shortest, but a very straightforward approach would just be to construct a new DataFrame explicitly from the index and values.
也许不是最短的,但一个非常简单的方法就是从索引和值中显式地构造一个新的 DataFrame。
>>> grp_cnt = df.groupby(['features'])['features'].count()
>>> pd.DataFrame(dict(features=grp_cnt.index, count=grp_cnt.values))
count features
0 2 Cats Allowed
1 1 Dogs Allowed
2 3 Doorman
Alternatively, you could achieve a one-liner with renaming columns and to_frame
using
或者,您可以通过重命名列并to_frame
使用
>>> df.groupby(['features'])['features'].count().to_frame().rename(
columns={'features':'counts'}).reset_index()
features counts
0 Cats Allowed 2
1 Dogs Allowed 1
2 Doorman 3
Your current attempt isn't working because you can't unstack a single level index on a Series to coerce it into a DataFrame.
您当前的尝试无效,因为您无法在 Series 上取消堆叠单级索引以将其强制转换为 DataFrame。