Python NumPy 和 SciPy - .todense() 和 .toarray() 之间的区别

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/30416695/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 08:24:42  来源:igfitidea点击:

NumPy and SciPy - Difference between .todense() and .toarray()

pythonnumpyscipy

提问by

I am wondering if there is any difference (advantage/disadvantage) of using .toarray()vs. .todense()on sparse NumPy arrays. E.g.,

我想知道在稀疏 NumPy 数组上使用.toarray()与使用是否有任何区别(优势/劣势).todense()。例如,

import scipy as sp
import numpy as np
sparse_m = sp.sparse.bsr_matrix(np.array([[1,0,0,0,1], [1,0,0,0,1]]))

%timeit sparse_m.toarray()
1000 loops, best of 3: 299 μs per loop

%timeit sparse_m.todense()
1000 loops, best of 3: 305 μs per loop

采纳答案by user2357112 supports Monica

toarrayreturns an ndarray; todensereturns a matrix. If you want a matrix, use todense; otherwise, use toarray.

toarray返回一个 ndarray;todense返回一个矩阵。如果你想要一个矩阵,请使用todense; 否则,使用toarray.