Python 如何在 Pandas 中使用 groupby 根据另一列中的条件计算百分比/比例总计

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/36987829/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 18:38:47  来源:igfitidea点击:

How to use groupby in pandas to calculate a percentage / proportion total based on a criteria in another column

pythonpandasdataframegroup-bypivot

提问by fuzzy_logic_77

I'm trying to work out how to use the groupbyfunction in pandas to work out the proportions of values per year with a given Yes/No criteria.

我正在尝试找出如何groupby在 Pandas 中使用该函数根据给定的 Yes/No 标准计算出每年值的比例。

For example, I have a dataframe called names:

例如,我有一个名为的数据框names

  Name  Number  Year   Sex Criteria
0  name1     789  1998  Male      N
1  name1     688  1999  Male      N
2  name1     639  2000  Male      N
3  name2     551  1998  Male      Y
4  name2     499  1999  Male      Y

I can use

我可以用

namesgrouped = names.groupby(["Sex", "Year", "Criteria"]).sum()

to get:

要得到:

                   Number
Sex    Year      Criteria
Male   1998 N        14507
            Y         2308
       1999 N        14119
            Y         2331

and so on. I would like the 'Number Criteria' column to show the % of the total for each gender and year - so instead of N = 14507 and Y = 2308 for 1998 above I'd have N = 86.27% and Y = 13.73%.

等等。我希望“数字标准”列显示每个性别和年份的总数百分比 - 因此,上面的 1998 年的 N = 14507 和 Y = 2308,而不是 N = 86.27% 和 Y = 13.73%。

Can anyone advise how to do this?

谁能建议如何做到这一点?

回答by IanS

This question is a direct extension of the suggested duplicate. Borrowing from the accepted answer, this will work:

这个问题是建议的副本的直接扩展。借用接受的答案,这将起作用:

In [46]: namesgrouped.groupby(level=[0, 1]).apply(lambda g: g / g.sum())
Out[46]: 
                      Number
Sex  Year Criteria          
Male 1998 N         0.588806
          Y         0.411194
     1999 N         0.579612
          Y         0.420388
     2000 N         1.000000


Edit: a transform operation might be faster than apply:

编辑:转换操作可能比应用更快:

namesgrouped / namesgrouped.groupby(level=[0, 1]).transform('sum')