Python 在每个列表元素上调用 int() 函数?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/3371269/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 10:42:02  来源:igfitidea点击:

Call int() function on every list element?

pythonlist

提问by Silver Light

I have a list with numeric strings, like so:

我有一个包含数字字符串的列表,如下所示:

numbers = ['1', '5', '10', '8'];

I would like to convert every list element to integer, so it would look like this:

我想将每个列表元素转换为整数,所以它看起来像这样:

numbers = [1, 5, 10, 8];

I could do it using a loop, like so:

我可以使用循环来做到这一点,如下所示:

new_numbers = [];
for n in numbers:
    new_numbers.append(int(n));
numbers = new_numbers;

Does it have to be so ugly? I'm sure there is a more pythonic way to do this in a one line of code. Please help me out.

有必要这么丑吗?我确信在一行代码中有一种更 Pythonic 的方法来做到这一点。请帮帮我。

采纳答案by adamk

This is what list comprehensionsare for:

这就是列表推导式的用途:

numbers = [ int(x) for x in numbers ]

回答by Mark Byers

In Python 2.x another approach is to use map:

在 Python 2.x 中,另一种方法是使用map

numbers = map(int, numbers)

Note: in Python 3.x mapreturns a map object which you can convert to a list if you want:

注意:在 Python 3.x 中map返回一个地图对象,您可以根据需要将其转换为列表:

numbers = list(map(int, numbers))

回答by Nick Dandoulakis

Another way,

其它的办法,

for i, v in enumerate(numbers): numbers[i] = int(v)

回答by Tim McNamara

If you are intending on passing those integers to a function or method, consider this example:

如果您打算将这些整数传递给函数或方法,请考虑以下示例:

sum(int(x) for x in numbers)

This construction is intentionally remarkably similar to list comprehensions mentioned by adamk. Without the square brackets, it's called a generator expression, and is a very memory-efficient way of passing a list of arguments to a method. A good discussion is available here: Generator Expressions vs. List Comprehension

这种构造有意地与 adamk 提到的列表推导式非常相似。没有方括号,它被称为生成器表达式,并且是将参数列表传递给方法的一种非常节省内存的方式。这里有一个很好的讨论:生成器表达式与列表理解

回答by renatopp

just a point,

只是一点,

numbers = [int(x) for x in numbers]

the list comprehension is more natural, while

列表理解更自然,而

numbers = map(int, numbers)

is faster.

是比较快的。

Probably this will not matter in most cases

在大多数情况下这可能无关紧要

Useful read: LP vs map

有用的阅读:LP vs 地图

回答by zhukovgreen

Another way to make it in Python 3:

在 Python 3 中实现它的另一种方法:

numbers = [*map(int, numbers)]

numbers = [*map(int, numbers)]

回答by Jim

Thought I'd consolidate the answers and show some timeitresults.

以为我会合并答案并显示一些timeit结果。

Python 2 sucks pretty bad at this, but mapis a bit faster than comprehension.

Python 2 在这方面很糟糕,但map比理解要快一些。

Python 2.7.13 (v2.7.13:a06454b1afa1, Dec 17 2016, 20:42:59) [MSC v.1500 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> import timeit
>>> setup = """import random
random.seed(10)
l = [str(random.randint(0, 99)) for i in range(100)]"""
>>> timeit.timeit('[int(v) for v in l]', setup)
116.25092001434314
>>> timeit.timeit('map(int, l)', setup)
106.66044823117454

Python 3 is over 4x faster by itself, but converting the mapgenerator object to a list is still faster than comprehension, and creating the list by unpacking the mapgenerator (thanks Artem!) is slightly faster still.

Python 3 本身的速度提高了 4 倍以上,但将map生成器对象转换为列表仍然比理解更快,并且通过解包map生成器(感谢 Artem!)来创建列表仍然稍微快一些。

Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> import timeit
>>> setup = """import random
random.seed(10)
l = [str(random.randint(0, 99)) for i in range(100)]"""
>>> timeit.timeit('[int(v) for v in l]', setup)
25.133059591551955
>>> timeit.timeit('list(map(int, l))', setup)
19.705547827217515
>>> timeit.timeit('[*map(int, l)]', setup)
19.45838406513076

Note: In Python 3, 4 elements seems to be the crossover point (3 in Python 2) where comprehension is slightly faster, though unpacking the generator is still faster than either for lists with more than 1 element.

注意:在 Python 3 中,4 个元素似乎是交叉点(Python 2 中的 3 个),其中理解速度稍快,但对于具有超过 1 个元素的列表,解包生成器仍然比任何一个都快。