scala 在apache spark数据帧中分解数组
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/39434736/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Explode array in apache spark Data Frame
提问by Artem
I am trying to flatten a schema of existing dataframe with nested fields. Structure of my dataframe is something like that:
我正在尝试使用嵌套字段展平现有数据框的模式。我的数据框的结构是这样的:
root
|-- Id: long (nullable = true)
|-- Type: string (nullable = true)
|-- Uri: string (nullable = true)
|-- Type: array (nullable = true)
| |-- element: string (containsNull = true)
|-- Gender: array (nullable = true)
| |-- element: string (containsNull = true)
Type and gender can contain array of elements, one element or null value. I tried to use the following code:
类型和性别可以包含元素数组、一个元素或空值。我尝试使用以下代码:
var resDf = df.withColumn("FlatType", explode(df("Type")))
But as a result in a resulting data frame I loose rows for which I had null values for Type column. It means, for example, if I have 10 rows and in 7 rows type is null and in 3 type is not null, after I use explode in resulting data frame I have only three rows.
但结果是在结果数据框中,我丢失了 Type 列为空值的行。这意味着,例如,如果我有 10 行并且在 7 行中类型为空并且在 3 中类型不为空,那么在我在结果数据框中使用爆炸后,我只有三行。
How can I keep rows with null values but explode array of values?
如何保留具有空值的行但分解值数组?
I found some kind of workaround but still stuck in one place. For standard types we can do the following:
我找到了某种解决方法,但仍然停留在一个地方。对于标准类型,我们可以执行以下操作:
def customExplode(df: DataFrame, field: String, colType: String): org.apache.spark.sql.Column = {
var exploded = None: Option[org.apache.spark.sql.Column]
colType.toLowerCase() match {
case "string" =>
val avoidNull = udf((column: Seq[String]) =>
if (column == null) Seq[String](null)
else column)
exploded = Some(explode(avoidNull(df(field))))
case "boolean" =>
val avoidNull = udf((xs: Seq[Boolean]) =>
if (xs == null) Seq[Boolean]()
else xs)
exploded = Some(explode(avoidNull(df(field))))
case _ => exploded = Some(explode(df(field)))
}
exploded.get
}
}
And after that just use it like this:
之后就这样使用它:
val explodedField = customExplode(resultDf, fieldName, fieldTypeMap(field))
resultDf = resultDf.withColumn(newName, explodedField)
However, I have a problem for struct type for the following type of structure:
但是,对于以下类型的结构,我对结构类型有疑问:
|-- Address: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- AddressType: array (nullable = true)
| | | |-- element: string (containsNull = true)
| | |-- DEA: array (nullable = true)
| | | |-- element: struct (containsNull = true)
| | | | |-- Number: array (nullable = true)
| | | | | |-- element: string (containsNull = true)
| | | | |-- ExpirationDate: array (nullable = true)
| | | | | |-- element: timestamp (containsNull = true)
| | | | |-- Status: array (nullable = true)
| | | | | |-- element: string (containsNull = true)
How can we process that kind of schema when DEA is null?
当 DEA 为空时,我们如何处理这种模式?
Thank you in advance.
先感谢您。
P.S. I tried to use Lateral views but result is the same.
PS 我尝试使用横向视图,但结果是一样的。
回答by Daniel de Paula
Maybe you can try using when:
也许您可以尝试使用when:
val resDf = df.withColumn("FlatType", when(df("Type").isNotNull, explode(df("Type")))
As shown in the whenfunction's documentation, the value nullis inserted for the values that do not match the conditions.
如when函数文档中所示,null为与条件不匹配的值插入值。

