pandas 熊猫将列转换为日期时间

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/43676152/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:30:01  来源:igfitidea点击:

Pandas convert column to datetime

pythonpandas

提问by warrenfitzhenry

I have this df:

我有这个 df:

    A
0   2017-04-17 00:00:00
1   2017-04-18 00:00:00
2   2017-04-19 00:00:00
3   2017-04-20 00:00:00
4   2017-04-21 00:00:00

I am trying to get rid of the H, M, S, so that I am left with:

我试图摆脱 H、M、S,这样我就剩下:

     A
0   2017-04-17
1   2017-04-18 
2   2017-04-19 
3   2017-04-20 
4   2017-04-21 

the dtype of column A is object. I have tried:

A列的数据类型是对象。我试过了:

df['A'] = df['A']datetime.strftime('%Y-%m-%d')

with:

和:

import datetime as datetime

I get:

我得到:

AttributeError: 'Series' object has no attribute 'strftime'

采纳答案by jezrael

I think you need dt.strftime- output are strings:

我认为你需要dt.strftime- 输出是strings

#if necessary
#df['A'] = pd.to_datetime(df['A'])

print (type(df.loc[0, 'A']))
<class 'pandas.tslib.Timestamp'>

df['A'] = df['A'].dt.strftime('%Y-%m-%d')
print (df)
            A
0  2017-04-17
1  2017-04-18
2  2017-04-19
3  2017-04-20
4  2017-04-21

print (type(df.loc[0, 'A']))
<class 'str'>

and for dates use date:

和日期使用date

df['A'] = df['A'].dt.date
print (df)

            A
0  2017-04-17
1  2017-04-18
2  2017-04-19
3  2017-04-20
4  2017-04-21

print (type(df.loc[0, 'A']))
<class 'datetime.date'>