Python 使用熊猫数据框的seaborn热图

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/37790429/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 19:56:05  来源:igfitidea点击:

seaborn heatmap using pandas dataframe

pythonpandasmatplotlibseaborn

提问by cancerconnector

I am struggling to massage a dataframe in pandas into the correct format for seaborn's heatmap (or matplotlib really) to make a heatmap.

我正在努力将 Pandas 中的数据帧转换为 seaborn 热图(或实际上是 matplotlib)的正确格式以制作热图。

My current dataframe (called data_yule) is:

我当前的数据帧(称为 data_yule)是:

     Unnamed: 0  SymmetricDivision         test  MutProb      value
3             3                1.0  sackin_yule    0.100  -4.180864
8             8                1.0  sackin_yule    0.050  -9.175349
13           13                1.0  sackin_yule    0.010 -11.408114
18           18                1.0  sackin_yule    0.005 -10.502450
23           23                1.0  sackin_yule    0.001  -8.027475
28           28                0.8  sackin_yule    0.100  -0.722602
33           33                0.8  sackin_yule    0.050  -6.996394
38           38                0.8  sackin_yule    0.010 -10.536340
43           43                0.8  sackin_yule    0.005  -9.544065
48           48                0.8  sackin_yule    0.001  -7.196407
53           53                0.6  sackin_yule    0.100  -0.392256
58           58                0.6  sackin_yule    0.050  -6.621639
63           63                0.6  sackin_yule    0.010  -9.551801
68           68                0.6  sackin_yule    0.005  -9.292469
73           73                0.6  sackin_yule    0.001  -6.760559
78           78                0.4  sackin_yule    0.100  -0.652147
83           83                0.4  sackin_yule    0.050  -6.885229
88           88                0.4  sackin_yule    0.010  -9.455776
93           93                0.4  sackin_yule    0.005  -8.936463
98           98                0.4  sackin_yule    0.001  -6.473629
103         103                0.2  sackin_yule    0.100  -0.964818
108         108                0.2  sackin_yule    0.050  -6.051482
113         113                0.2  sackin_yule    0.010  -9.784686
118         118                0.2  sackin_yule    0.005  -8.571063
123         123                0.2  sackin_yule    0.001  -6.146121

and my attempts using matplotlib was:

我使用 matplotlib 的尝试是:

plt.pcolor(data_yule.SymmetricDivision, data_yule.MutProb, data_yule.value)

which threw the error:

抛出错误:

ValueError: not enough values to unpack (expected 2, got 1)

and the seaborn attempt was:

而seaborn的尝试是:

sns.heatmap(data_yule.SymmetricDivision, data_yule.MutProb, data_yule.value)

which threw:

其中抛出:

ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

It seems trivial as both functions want rectangular dataset, but I'm missing something, clearly.

这似乎微不足道,因为这两个函数都需要矩形数据集,但显然我遗漏了一些东西。

回答by unutbu

The data needs to be "pivoted"to look like

数据需要“旋转”才能看起来像

In [96]: result
Out[96]: 
MutProb               0.001      0.005      0.010     0.050     0.100
SymmetricDivision                                                    
0.2               -6.146121  -8.571063  -9.784686 -6.051482 -0.964818
0.4               -6.473629  -8.936463  -9.455776 -6.885229 -0.652147
0.6               -6.760559  -9.292469  -9.551801 -6.621639 -0.392256
0.8               -7.196407  -9.544065 -10.536340 -6.996394 -0.722602
1.0               -8.027475 -10.502450 -11.408114 -9.175349 -4.180864

Then you can pass the 2D array (or DataFrame) to seaborn.heatmapor plt.pcolor:

然后您可以将二维数组(或 DataFrame)传递给seaborn.heatmapor plt.pcolor

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.DataFrame({'MutProb': [0.1,
  0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001, 0.1, 0.05, 0.01, 0.005, 0.001], 'SymmetricDivision': [1.0, 1.0, 1.0, 1.0, 1.0, 0.8, 0.8, 0.8, 0.8, 0.8, 0.6, 0.6, 0.6, 0.6, 0.6, 0.4, 0.4, 0.4, 0.4, 0.4, 0.2, 0.2, 0.2, 0.2, 0.2], 'test': ['sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule', 'sackin_yule'], 'value': [-4.1808639999999997, -9.1753490000000006, -11.408113999999999, -10.50245, -8.0274750000000008, -0.72260200000000008, -6.9963940000000004, -10.536339999999999, -9.5440649999999998, -7.1964070000000007, -0.39225599999999999, -6.6216390000000001, -9.5518009999999993, -9.2924690000000005, -6.7605589999999998, -0.65214700000000003, -6.8852289999999989, -9.4557760000000002, -8.9364629999999998, -6.4736289999999999, -0.96481800000000006, -6.051482, -9.7846860000000007, -8.5710630000000005, -6.1461209999999999]})
result = df.pivot(index='SymmetricDivision', columns='MutProb', values='value')
sns.heatmap(result, annot=True, fmt="g", cmap='viridis')
plt.show()

yields enter image description here

产量 在此处输入图片说明