Python/Pandas:计算每行中缺失/NaN 的数量
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/30059260/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python/Pandas: counting the number of missing/NaN in each row
提问by Chernyavski.aa
I've got a dataset with a big number of rows. Some of the values are NaN, like this:
我有一个包含大量行的数据集。其中一些值为 NaN,如下所示:
In [91]: df
Out[91]:
1 3 1 1 1
1 3 1 1 1
2 3 1 1 1
1 1 NaN NaN NaN
1 3 1 1 1
1 1 1 1 1
And I want to count the number of NaN values in each string, it would be like this:
我想计算每个字符串中 NaN 值的数量,就像这样:
In [91]: list = <somecode with df>
In [92]: list
Out[91]:
[0,
0,
0,
3,
0,
0]
What is the best and fastest way to do it?
最好和最快的方法是什么?
回答by Zero
You could first find if element is NaN
or not by isnull()
and then take row-wise sum(axis=1)
您可以先查找元素是否为NaN
by isnull()
,然后按行进行sum(axis=1)
In [195]: df.isnull().sum(axis=1)
Out[195]:
0 0
1 0
2 0
3 3
4 0
5 0
dtype: int64
And, if you want the output as list, you can
而且,如果您希望将输出作为列表,您可以
In [196]: df.isnull().sum(axis=1).tolist()
Out[196]: [0, 0, 0, 3, 0, 0]
Or use count
like
或者使用count
像
In [130]: df.shape[1] - df.count(axis=1)
Out[130]:
0 0
1 0
2 0
3 3
4 0
5 0
dtype: int64