Python/Pandas:计算每行中缺失/NaN 的数量

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/30059260/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-08 15:39:06  来源:igfitidea点击:

Python/Pandas: counting the number of missing/NaN in each row

pandascountrowdataframenan

提问by Chernyavski.aa

I've got a dataset with a big number of rows. Some of the values are NaN, like this:

我有一个包含大量行的数据集。其中一些值为 NaN,如下所示:

In [91]: df
Out[91]:
 1    3      1      1      1
 1    3      1      1      1
 2    3      1      1      1
 1    1    NaN    NaN    NaN
 1    3      1      1      1
 1    1      1      1      1

And I want to count the number of NaN values in each string, it would be like this:

我想计算每个字符串中 NaN 值的数量,就像这样:

In [91]: list = <somecode with df>
In [92]: list
    Out[91]:
     [0,
      0,
      0,
      3,
      0,
      0]

What is the best and fastest way to do it?

最好和最快的方法是什么?

回答by Zero

You could first find if element is NaNor not by isnull()and then take row-wise sum(axis=1)

您可以先查找元素是否为NaNby isnull(),然后按行进行sum(axis=1)

In [195]: df.isnull().sum(axis=1)
Out[195]:
0    0
1    0
2    0
3    3
4    0
5    0
dtype: int64

And, if you want the output as list, you can

而且,如果您希望将输出作为列表,您可以

In [196]: df.isnull().sum(axis=1).tolist()
Out[196]: [0, 0, 0, 3, 0, 0]


Or use countlike

或者使用count

In [130]: df.shape[1] - df.count(axis=1)
Out[130]:
0    0
1    0
2    0
3    3
4    0
5    0
dtype: int64