使用 Python Pandas 使用通配符名称搜索对所有列求和
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/12569730/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Sum all columns with a wildcard name search using Python Pandas
提问by jbssm
I have a dataframe in python pandas with several columns taken from a CSV file.
我在 python pandas 中有一个数据框,其中有几列取自 CSV 文件。
For instance, data =:
例如,数据=:
Day P1S1 P1S2 P1S3 P2S1 P2S2 P2S3
1 1 2 2 3 1 2
2 2 2 3 5 4 2
And what I need is to get the sum of all columns which name starts with P1... something like P1* with a wildcard.
而我需要的是获取名称以 P1 开头的所有列的总和......类似于带有通配符的 P1* 。
Something like the following which gives an error:
类似于以下内容的内容会出现错误:
P1Sum = data["P1*"]
P1Sum = 数据["P1*"]
Is there any why to do this with pandas?
有什么理由对Pandas这样做吗?
回答by jbssm
I found the answer.
我找到了答案。
Using the data, dataframe from the question:
使用数据,问题中的数据框:
from pandas import *
P1Channels = data.filter(regex="P1")
P1Sum = P1Channels.sum(axis=1)
回答by Anton Tarasenko
List comprehensions on columns allow more filters in the ifcondition:
列上的列表推导式允许在if条件中使用更多过滤器:
In [1]: df = pd.DataFrame(np.arange(15).reshape(5, 3), columns=['P1S1', 'P1S2', 'P2S1'])
In [2]: df
Out[2]:
P1S1 P1S2 P2S1
0 0 1 2
1 3 4 5
2 6 7 8
3 9 10 11
4 12 13 14
In [3]: df.loc[:, [x for x in df.columns if x.startswith('P1')]].sum(axis=1)
Out[3]:
0 1
1 7
2 13
3 19
4 25
dtype: int64
回答by jarvis
Thanks for the tip jbssm, for anyone else looking for a sum total, I ended up adding .sum()at the end, so:
感谢 jbssm 的提示,对于其他寻找总和的人,我最终添加.sum()了,所以:
P1Sum= P1Channels.sum(axis=1).sum()

