pandas 如何将数据框列拆分为多列

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/18034361/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 21:03:33  来源:igfitidea点击:

How to split a dataframe column into multiple columns

pythoncsvpandasdataframe

提问by Derric Lewis

After much prodding I am starting migrating my R scripts to Python. Most of my work in R involved data frames, and I am using the DataFrameobject from the pandas package. In my script I need to read in a csv file and import the data into a DataFrameobject. Next I need to convert the hex values into a column labelled DATAinto bitwise data, and then create 16 new columns, one for each bit.

经过多次刺激,我开始将我的 R 脚本迁移到 Python。我在 R 中的大部分工作都涉及数据框,我使用的DataFrame是 pandas 包中的对象。在我的脚本中,我需要读入一个 csv 文件并将数据导入到一个DataFrame对象中。接下来,我需要将十六进制值转换为标记DATA为按位数据的列,然后创建 16 个新列,每个位一个。

My example input data in file test.txtlooks as follows,

我在文件中的示例输入数据test.txt如下所示,

PREFIX,TEST,ZONE,ROW,COL,DATA

6_6,READ,0, 0, 0,BFED

6_6,READ,0, 1, 0,BB7D

6_6,READ,0, 2, 0,FFF7

6_6,READ,0, 3, 0,E7FF

6_6,READ,0, 4, 0,FBF8

6_6,READ,0, 5, 0,DE75

6_6,READ,0, 6, 0,DFFE

前缀、测试、区域、行、列、数据

6_6,READ,0, 0, 0,BFED

6_6,READ,0, 1, 0,BB7D

6_6,READ,0, 2, 0,FFF7

6_6,READ,0, 3, 0,E7FF

6_6,READ,0, 4, 0,FBF8

6_6,READ,0, 5, 0,DE75

6_6,READ,0, 6, 0,DFFE

My python script test.pyis as follows,

我的python脚本test.py如下,

import glob

import pandas as pd

import numpy as np

fname = 'test.txt'

df = pd.read_csv(fname, comment="#")

dfs = df[df.TEST == 'READ']

# function to convert the hexstring into a binary string

def hex2bin(hstr):

    return bin(int(hstr,16))[2:]


# convert the hexstring in column DATA to binarystring ROWDATA

dfs['BINDATA'] = dfs['DATA'].apply(hex2bin)

# get rid of the column DATA

del dfs['DATA']

When I run this script, and inspect the object dfs, I get the following,

当我运行这个脚本并检查对象时dfs,我得到以下信息,

PREFIX TEST ZONE ROW COL BINDATA

0 6_6 READ 0 0 0 1011111111101101

1 6_6 READ 0 1 0 1011101101111101

2 6_6 READ 0 2 0 1111111111110111

3 6_6 READ 0 3 0 1110011111111111

4 6_6 READ 0 4 0 1111101111111000

5 6_6 READ 0 5 0 1101111001110101

6 6_6 READ 0 6 0 1101111111111110

前缀测试区行列二进制数据

0 6_6 读 0 0 0 10111111111101101

1 6_6 读 0 1 0 1011101101111101

2 6_6 读 0 2 0 11111111111110111

3 6_6 读 0 3 0 11100111111111111

4 6_6 读 0 4 0 11111011111111000

5 6_6 读 0 5 0 1101111001110101

6 6_6 读 0 6 0 11011111111111110

So now I am not sure how to split the column named BINDATAinto 16 new columns (could be named B0, B0, B2, ...., B15). Any help will be appreciated.

所以现在我不确定如何将命名的列拆分BINDATA为 16 个新列(可以命名为 B0、B0、B2、....、B15)。任何帮助将不胜感激。

Thanks & Regards,

感谢和问候,

Derric.

德里克。

回答by joris

I don't know if it can be done simpler (without the for loop), but this does the trick:

我不知道它是否可以做得更简单(没有 for 循环),但这确实有效:

for i in range(16):
    dfs['B'+str(i)] = dfs['BINDATA'].str[i]

The strattribute of the Series gives access to some vectorized string methods which act upon each element (see docs: http://pandas.pydata.org/pandas-docs/stable/basics.html#vectorized-string-methods). In this case we just index the string to acces the different characters.
This gives me:

str系列的属性允许访问一些对每个元素起作用的矢量化字符串方法(参见文档:http: //pandas.pydata.org/pandas-docs/stable/basics.html#vectorized-string-methods)。在这种情况下,我们只是索引字符串以访问不同的字符。
这给了我:

In [20]: dfs
Out[20]:
            BINDATA B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
0  1011111111101101  1  0  1  1  1  1  1  1  1  1   1   0   1   1   0   1
1  1011101101111101  1  0  1  1  1  0  1  1  0  1   1   1   1   1   0   1
2  1111111111110111  1  1  1  1  1  1  1  1  1  1   1   1   0   1   1   1
3  1110011111111111  1  1  1  0  0  1  1  1  1  1   1   1   1   1   1   1
4  1111101111111000  1  1  1  1  1  0  1  1  1  1   1   1   1   0   0   0
5  1101111001110101  1  1  0  1  1  1  1  0  0  1   1   1   0   1   0   1
6  1101111111111110  1  1  0  1  1  1  1  1  1  1   1   1   1   1   1   0

If you want them as ints instead of strings, you can add .astype(int)in the for loop.

如果您希望它们作为整数而不是字符串,您可以.astype(int)在 for 循环中添加。



EDIT: Another way to do it (a oneliner, but you have to change the column names in a second step):

编辑:另一种方法(oneliner,但您必须在第二步中更改列名):

In [34]: splitted = dfs['BINDATA'].apply(lambda x: pd.Series(list(x)))

In [35]: splitted.columns = ['B'+str(x) for x in splitted.columns]

In [36]: dfs.join(splitted)
Out[36]:
            BINDATA B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15
0  1011111111101101  1  0  1  1  1  1  1  1  1  1   1   0   1   1   0   1
1  1011101101111101  1  0  1  1  1  0  1  1  0  1   1   1   1   1   0   1
2  1111111111110111  1  1  1  1  1  1  1  1  1  1   1   1   0   1   1   1
3  1110011111111111  1  1  1  0  0  1  1  1  1  1   1   1   1   1   1   1
4  1111101111111000  1  1  1  1  1  0  1  1  1  1   1   1   1   0   0   0
5  1101111001110101  1  1  0  1  1  1  1  0  0  1   1   1   0   1   0   1
6  1101111111111110  1  1  0  1  1  1  1  1  1  1   1   1   1   1   1   0

回答by Phillip Cloud

Here's how you can do this without a loop (but not really, since there's a lot of implicit looping in this code):

下面是如何在没有循环的情况下执行此操作(但实际上并非如此,因为此代码中有很多隐式循环):

import pandas as pd

# read the above frame from the clipboard
df = pd.read_clipboard(converters={'BINDATA': str})
df = df.fillna(nan).replace('None', nan).dropna(axis=0, how='all')

# here are the lines that matter
bindata = df.BINDATA.apply(list).apply(Series)
bindata.columns = bindata.columns.map('B{0}'.format)
res = pd.concat([df, bindata], axis=1).convert_objects(convert_numeric=True)