在 python 中登录到 base 2
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/3719631/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Log to the base 2 in python
提问by Compuser7
How should I compute log to the base two in python. Eg. I have this equation where I am using log base 2
我应该如何在 python 中计算以 2 为基数的日志。例如。我有这个方程,我使用的是对数基数 2
import math
e = -(t/T)* math.log((t/T)[, 2])
采纳答案by unutbu
It's good to know that
很高兴知道


but also know that
math.logtakes an optional second argument which allows you to specify the base:
但也知道它
math.log需要一个可选的第二个参数,它允许您指定基数:
In [22]: import math
In [23]: math.log?
Type: builtin_function_or_method
Base Class: <type 'builtin_function_or_method'>
String Form: <built-in function log>
Namespace: Interactive
Docstring:
log(x[, base]) -> the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.
In [25]: math.log(8,2)
Out[25]: 3.0
回答by Alexandre C.
log_base_2(x) = log(x) / log(2)
log_base_2(x) = log(x) / log(2)
回答by Conor
logbase2(x) = log(x)/log(2)
logbase2(x) = log(x)/log(2)
回答by puzz
>>> def log2( x ):
... return math.log( x ) / math.log( 2 )
...
>>> log2( 2 )
1.0
>>> log2( 4 )
2.0
>>> log2( 8 )
3.0
>>> log2( 2.4 )
1.2630344058337937
>>>
回答by Platinum Azure
Don't forget that log[base A] x = log[base B] x / log[base B] A.
不要忘记log[base A] x = log[base B] x / log[base B] A。
So if you only have log(for natural log) and log10(for base-10 log), you can use
因此,如果您只有log(对于自然对数)和log10(对于基数为 10 的对数),则可以使用
myLog2Answer = log10(myInput) / log10(2)
回答by log0
http://en.wikipedia.org/wiki/Binary_logarithm
http://en.wikipedia.org/wiki/Binary_logarithm
def lg(x, tol=1e-13):
res = 0.0
# Integer part
while x<1:
res -= 1
x *= 2
while x>=2:
res += 1
x /= 2
# Fractional part
fp = 1.0
while fp>=tol:
fp /= 2
x *= x
if x >= 2:
x /= 2
res += fp
return res
回答by riza
Using numpy:
使用 numpy:
In [1]: import numpy as np
In [2]: np.log2?
Type: function
Base Class: <type 'function'>
String Form: <function log2 at 0x03049030>
Namespace: Interactive
File: c:\python26\lib\site-packages\numpy\lib\ufunclike.py
Definition: np.log2(x, y=None)
Docstring:
Return the base 2 logarithm of the input array, element-wise.
Parameters
----------
x : array_like
Input array.
y : array_like
Optional output array with the same shape as `x`.
Returns
-------
y : ndarray
The logarithm to the base 2 of `x` element-wise.
NaNs are returned where `x` is negative.
See Also
--------
log, log1p, log10
Examples
--------
>>> np.log2([-1, 2, 4])
array([ NaN, 1., 2.])
In [3]: np.log2(8)
Out[3]: 3.0
回答by akashchandrakar
If you are on python 3.4 or above then it already has a built-in function for computing log2(x)
如果你使用的是 python 3.4 或更高版本,那么它已经有一个用于计算 log2(x) 的内置函数
import math
'finds log base2 of x'
answer = math.log2(x)
If you are on older version of python then you can do like this
如果您使用的是旧版本的python,那么您可以这样做
import math
'finds log base2 of x'
answer = math.log(x)/math.log(2)
回答by Bob Stein
float → float math.log2(x)
浮动 → 浮动 math.log2(x)
import math
log2 = math.log(x, 2.0)
log2 = math.log2(x) # python 3.4 or later
- Thanks @akashchandrakarand @unutbu.
float → int math.frexp(x)
浮动 → 整数 math.frexp(x)
If all you need is the integer part of log base 2 of a floating point number, extracting the exponent is pretty efficient:
如果您只需要浮点数的对数基数 2 的整数部分,那么提取指数非常有效:
log2int_slow = int(math.floor(math.log(x, 2.0)))
log2int_fast = math.frexp(x)[1] - 1
Python frexp() calls the C function frexp()which just grabs and tweaks the exponent.
Python frexp() returns a tuple (mantissa, exponent). So
[1]gets the exponent part.For integral powers of 2 the exponent is one more than you might expect. For example 32 is stored as 0.5x2?. This explains the
- 1above. Also works for 1/32 which is stored as 0.5x2??.Floors toward negative infinity, so log?31 is 4 not 5. log?(1/17) is -5 not -4.
Python frexp() 调用C 函数 frexp(),它只是抓取和调整指数。
Python frexp() 返回一个元组(尾数,指数)。所以
[1]得到指数部分。对于 2 的整数幂,指数比您预期的多 1。例如 32 存储为 0.5x2?。这解释了
- 1上面的内容。也适用于存储为 0.5x2?? 的 1/32。负无穷大的楼层,所以 log?31 是 4 而不是 5。 log?(1/17) 是 -5 而不是 -4。
int → int x.bit_length()
整数 → 整数 x.bit_length()
If both input and output are integers, this native integer method could be very efficient:
如果输入和输出都是整数,这个原生整数方法可能非常有效:
log2int_faster = x.bit_length() - 1
- 1because 2? requires n+1 bits. Works for very large integers, e.g.2**10000.Floors toward negative infinity, so log?31 is 4 not 5. log?(1/17) is -5 not -4.
- 1因为 2?需要 n+1 位。适用于非常大的整数,例如2**10000.负无穷大的楼层,所以 log?31 是 4 而不是 5。 log?(1/17) 是 -5 而不是 -4。
回答by Akash Kandpal
Try this ,
尝试这个 ,
import math
print(math.log(8,2)) # math.log(number,base)

