CUDA 在 Linux 和 Windows 上的优缺点?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/4754895/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pros and cons of CUDA on Linux vs Windows?
提问by sj755
I'm using both operating systems (Fedora 13 and Windows 7) for different purposes, but I'm going into GPU computing using CUDA C/C++. I've read about the Parallel Nsight plugin for Visual Studio and it seems like an amazing environment to develop in. However, Linux has always had a greater range of of tools and GPU supercomputers usually do use Linux. Anyway, I'd like to know the pros and cons from anyone whose used either or both of the platforms. In case anyone is wondering, it's a dual-boot system and I'm going to install a GTX 470 for GPU debugging into my extra PCI express slot. Please no flame wars...
我将两种操作系统(Fedora 13 和 Windows 7)用于不同的目的,但我将使用 CUDA C/C++ 进行 GPU 计算。我读过 Visual Studio 的 Parallel Nsight 插件,它似乎是一个很棒的开发环境。然而,Linux 一直有更多的工具和 GPU 超级计算机通常使用 Linux。无论如何,我想知道使用这两个平台之一或两个平台的任何人的利弊。如果有人想知道,它是一个双引导系统,我将在我额外的 PCI express 插槽中安装一个 GTX 470 用于 GPU 调试。请不要进行火焰War...
回答by Martin Beckett
The NVidia tools on windows are nice.
Windows 上的 NVidia 工具很好。
The reason supercomputers use Linux is that the windows client license on 10,000 nodes gets pricey! There are also tradiationally a bunch of better tools to manage Linux clusters.
超级计算机使用 Linux 的原因是 10,000 个节点上的 Windows 客户端许可证变得昂贵!传统上还有很多更好的工具来管理 Linux 集群。
There is a general performance hit on windows just because there is lots of gui stuff you can't turn off. We measured 10-15% lower performance for a CPU bound task vs Linux running a command line.
Windows 上的一般性能会受到影响,因为有很多您无法关闭的 gui 东西。我们测量到,与运行命令行的 Linux 相比,受 CPU 限制的任务的性能降低了 10-15%。
The actual performance inside the Cuda task on the GPU 'should' be the same.
GPU 上的 Cuda 任务内部的实际性能“应该”相同。
回答by Pavan Yalamanchili
If you are going to be using cuda code for production software, you might as well do it in the environment you are most friendly with.
如果您打算将 cuda 代码用于生产软件,您不妨在您最友好的环境中进行。
But if you are looking at a performance point of view, and the time taken for a build, it would be best to use Linux (if you are comfortable with Make).
但是,如果您从性能的角度来看,以及构建所需的时间,最好使用 Linux(如果您对 Make 感到满意)。