Python Pandas 替换所有列名中的一个字符
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/39741429/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas replace a character in all column names
提问by Cedric H.
I have data frames with column names (coming from .csv files) containing (
and )
and I'd like to replace them with _
.
我有列名的数据帧包含(从.csv档案来推出)(
和)
我想,以取代他们_
。
How can I do that in place for all columns?
我怎样才能为所有列做到这一点?
回答by jezrael
Use str.replace
:
使用str.replace
:
df.columns = df.columns.str.replace("[()]", "_")
Sample:
样本:
df = pd.DataFrame({'(A)':[1,2,3],
'(B)':[4,5,6],
'C)':[7,8,9]})
print (df)
(A) (B) C)
0 1 4 7
1 2 5 8
2 3 6 9
df.columns = df.columns.str.replace(r"[()]", "_")
print (df)
_A_ _B_ C_
0 1 4 7
1 2 5 8
2 3 6 9
回答by agbalutemi
The square brackets are used to demarcate a range of characters you want extracted. for example:
方括号用于划分要提取的字符范围。例如:
r"[Nn]ational"
will extract both occurences where we have "National" and "national" i.e it extracts N or n.
将提取我们有“国家”和“国家”的两个出现,即它提取 N 或 n。