Python group by

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/3749512/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 12:32:34  来源:igfitidea点击:

Python group by

pythongroup-by

提问by Hellnar

Assume that I have a set of data pair where index 0is the value and index 1is the type:

假设我有一组数据对,其中索引 0是值,索引 1是类型:

input = [
          ('11013331', 'KAT'), 
          ('9085267',  'NOT'), 
          ('5238761',  'ETH'), 
          ('5349618',  'ETH'), 
          ('11788544', 'NOT'), 
          ('962142',   'ETH'), 
          ('7795297',  'ETH'), 
          ('7341464',  'ETH'), 
          ('9843236',  'KAT'), 
          ('5594916',  'ETH'), 
          ('1550003',  'ETH')
        ]

I want to group them by their type (by the 1st indexed string) as such:

我想按它们的类型(按第一个索引字符串)对它们进行分组,如下所示:

result = [ 
           { 
             type:'KAT', 
             items: ['11013331', '9843236'] 
           },
           {
             type:'NOT', 
             items: ['9085267', '11788544'] 
           },
           {
             type:'ETH', 
             items: ['5238761', '962142', '7795297', '7341464', '5594916', '1550003'] 
           }
         ] 

How can I achieve this in an efficient way?

我怎样才能以有效的方式实现这一目标?

采纳答案by kennytm

Do it in 2 steps. First, create a dictionary.

分两步完成。首先,创建一个字典。

>>> input = [('11013331', 'KAT'), ('9085267', 'NOT'), ('5238761', 'ETH'), ('5349618', 'ETH'), ('11788544', 'NOT'), ('962142', 'ETH'), ('7795297', 'ETH'), ('7341464', 'ETH'), ('9843236', 'KAT'), ('5594916', 'ETH'), ('1550003', 'ETH')]
>>> from collections import defaultdict
>>> res = defaultdict(list)
>>> for v, k in input: res[k].append(v)
...

Then, convert that dictionary into the expected format.

然后,将该字典转换为预期的格式。

>>> [{'type':k, 'items':v} for k,v in res.items()]
[{'items': ['9085267', '11788544'], 'type': 'NOT'}, {'items': ['5238761', '5349618', '962142', '7795297', '7341464', '5594916', '1550003'], 'type': 'ETH'}, {'items': ['11013331', '9843236'], 'type': 'KAT'}]


It is also possible with itertools.groupby but it requires the input to be sorted first.

itertools.groupby 也可以,但它需要先对输入进行排序。

>>> sorted_input = sorted(input, key=itemgetter(1))
>>> groups = groupby(sorted_input, key=itemgetter(1))
>>> [{'type':k, 'items':[x[0] for x in v]} for k, v in groups]
[{'items': ['5238761', '5349618', '962142', '7795297', '7341464', '5594916', '1550003'], 'type': 'ETH'}, {'items': ['11013331', '9843236'], 'type': 'KAT'}, {'items': ['9085267', '11788544'], 'type': 'NOT'}]


Note both of these do not respect the original order of the keys. You need an OrderedDict if you need to keep the order.

请注意,这两个都不尊重键的原始顺序。如果您需要保留订单,则需要 OrderedDict。

>>> from collections import OrderedDict
>>> res = OrderedDict()
>>> for v, k in input:
...   if k in res: res[k].append(v)
...   else: res[k] = [v]
... 
>>> [{'type':k, 'items':v} for k,v in res.items()]
[{'items': ['11013331', '9843236'], 'type': 'KAT'}, {'items': ['9085267', '11788544'], 'type': 'NOT'}, {'items': ['5238761', '5349618', '962142', '7795297', '7341464', '5594916', '1550003'], 'type': 'ETH'}]

回答by PaulMcG

Python's built-in itertoolsmodule actually has a groupbyfunction , but for that the elements to be grouped must first be sorted such that the elements to be grouped are contiguous in the list:

Python 的内置itertools模块实际上有一个groupbyfunction ,但为此必须先对要分组的元素进行排序,以便要分组的元素在列表中是连续的:

from operator import itemgetter
sortkeyfn = itemgetter(1)
input = [('11013331', 'KAT'), ('9085267', 'NOT'), ('5238761', 'ETH'), 
 ('5349618', 'ETH'), ('11788544', 'NOT'), ('962142', 'ETH'), ('7795297', 'ETH'), 
 ('7341464', 'ETH'), ('9843236', 'KAT'), ('5594916', 'ETH'), ('1550003', 'ETH')] 
input.sort(key=sortkeyfn)

Now input looks like:

现在输入看起来像:

[('5238761', 'ETH'), ('5349618', 'ETH'), ('962142', 'ETH'), ('7795297', 'ETH'),
 ('7341464', 'ETH'), ('5594916', 'ETH'), ('1550003', 'ETH'), ('11013331', 'KAT'),
 ('9843236', 'KAT'), ('9085267', 'NOT'), ('11788544', 'NOT')]

groupbyreturns a sequence of 2-tuples, of the form (key, values_iterator). What we want is to turn this into a list of dicts where the 'type' is the key, and 'items' is a list of the 0'th elements of the tuples returned by the values_iterator. Like this:

groupby返回形式为 的 2 元组序列(key, values_iterator)。我们想要的是把它变成一个 dicts 列表,其中 'type' 是键,'items' 是 values_iterator 返回的元组的第 0 个元素的列表。像这样:

from itertools import groupby
result = []
for key,valuesiter in groupby(input, key=sortkeyfn):
    result.append(dict(type=key, items=list(v[0] for v in valuesiter)))

Now resultcontains your desired dict, as stated in your question.

现在result包含您想要的字典,如您的问题所述。

You might consider, though, just making a single dict out of this, keyed by type, and each value containing the list of values. In your current form, to find the values for a particular type, you'll have to iterate over the list to find the dict containing the matching 'type' key, and then get the 'items' element from it. If you use a single dict instead of a list of 1-item dicts, you can find the items for a particular type with a single keyed lookup into the master dict. Using groupby, this would look like:

不过,您可能会考虑仅从中制作一个单独的 dict,按类型键入,每个值都包含值列表。在您当前的表单中,要查找特定类型的值,您必须遍历列表以查找包含匹配“type”键的 dict,然后从中获取“items”元素。如果您使用单个 dict 而不是 1 项 dict 的列表,则可以通过对主 dict 的单键查找来找到特定类型的项。使用groupby,这看起来像:

result = {}
for key,valuesiter in groupby(input, key=sortkeyfn):
    result[key] = list(v[0] for v in valuesiter)

resultnow contains this dict (this is similar to the intermediate resdefaultdict in @KennyTM's answer):

result现在包含这个字典(这类似于res@KennyTM 的答案中的中间defaultdict):

{'NOT': ['9085267', '11788544'], 
 'ETH': ['5238761', '5349618', '962142', '7795297', '7341464', '5594916', '1550003'], 
 'KAT': ['11013331', '9843236']}

(If you want to reduce this to a one-liner, you can:

(如果您想将其减少为单行,您可以:

result = dict((key,list(v[0] for v in valuesiter)
              for key,valuesiter in groupby(input, key=sortkeyfn))

or using the newfangled dict-comprehension form:

或使用新奇的 dict-comprehension 形式:

result = {key:list(v[0] for v in valuesiter)
              for key,valuesiter in groupby(input, key=sortkeyfn)}

回答by mmj

The following function will quickly (no sortingrequired) group tuples of any length by a key having any index:

以下函数将通过具有任何索引的键快速(无需排序)对任何长度的元组进行分组:

# given a sequence of tuples like [(3,'c',6),(7,'a',2),(88,'c',4),(45,'a',0)],
# returns a dict grouping tuples by idx-th element - with idx=1 we have:
# if merge is True {'c':(3,6,88,4),     'a':(7,2,45,0)}
# if merge is False {'c':((3,6),(88,4)), 'a':((7,2),(45,0))}
def group_by(seqs,idx=0,merge=True):
    d = dict()
    for seq in seqs:
        k = seq[idx]
        v = d.get(k,tuple()) + (seq[:idx]+seq[idx+1:] if merge else (seq[:idx]+seq[idx+1:],))
        d.update({k:v})
    return d

In the case of your question, the index of key you want to group by is 1, therefore:

对于您的问题,您要分组的键的索引为 1,因此:

group_by(input,1)

gives

{'ETH': ('5238761','5349618','962142','7795297','7341464','5594916','1550003'),
 'KAT': ('11013331', '9843236'),
 'NOT': ('9085267', '11788544')}

which is not exactly the output you asked for, but might as well suit your needs.

这不完全是您要求的输出,但也可能适合您的需求。

回答by akiva

I also liked pandas simple grouping. it's powerful, simple and most adequate for large data set

我也喜欢熊猫简单分组。它功能强大,简单,最适合大数据集

result = pandas.DataFrame(input).groupby(1).groups

result = pandas.DataFrame(input).groupby(1).groups

回答by akiva

result = []
# Make a set of your "types":
input_set = set([tpl[1] for tpl in input])
>>> set(['ETH', 'KAT', 'NOT'])
# Iterate over the input_set
for type_ in input_set:
    # a dict to gather things:
    D = {}
    # filter all tuples from your input with the same type as type_
    tuples = filter(lambda tpl: tpl[1] == type_, input)
    # write them in the D:
    D["type"] = type_
    D["itmes"] = [tpl[0] for tpl in tuples]
    # append D to results:
    result.append(D)

result
>>> [{'itmes': ['9085267', '11788544'], 'type': 'NOT'}, {'itmes': ['5238761', '5349618', '962142', '7795297', '7341464', '5594916', '1550003'], 'type': 'ETH'}, {'itmes': ['11013331', '9843236'], 'type': 'KAT'}]

回答by ronen

This answer is similar to @PaulMcG's answerbut doesn't require sorting the input.

这个答案类似于@PaulMcG 的答案,但不需要对输入进行排序。

For those into functional programming, groupBycan be written in one line (not including imports!), and unlike itertools.groupbyit doesn't require the input to be sorted:

对于那些进入函数式编程的人,groupBy可以写在一行中(不包括导入!),不像itertools.groupby它不需要对输入进行排序:

from functools import reduce # import needed for python3; builtin in python2
from collections import defaultdict

def groupBy(key, seq):
 return reduce(lambda grp, val: grp[key(val)].append(val) or grp, seq, defaultdict(list))

(The reason for ... or grpin the lambdais that for this reduce()to work, the lambdaneeds to return its first argument; because list.append()always returns Nonethe orwill always return grp. I.e. it's a hack to get around python's restriction that a lambda can only evaluate a single expression.)

(原因... or grplambda是,为了这个reduce()工作中,lambda需要返回它的第一个参数,因为list.append()总是返回Noneor总是会返回grp。也就是说,它是一个黑客绕过Python的限制,即在拉姆达只能计算一个表达式。)

This returns a dict whose keys are found by evaluating the given function and whose values are a list of the original items in the original order. For the OP's example, calling this as groupBy(lambda pair: pair[1], input)will return this dict:

这将返回一个 dict,其键是通过评估给定函数找到的,其值是原始顺序中原始项目的列表。对于 OP 的示例,调用 asgroupBy(lambda pair: pair[1], input)将返回此字典:

{'KAT': [('11013331', 'KAT'), ('9843236', 'KAT')],
 'NOT': [('9085267', 'NOT'), ('11788544', 'NOT')],
 'ETH': [('5238761', 'ETH'), ('5349618', 'ETH'), ('962142', 'ETH'), ('7795297', 'ETH'), ('7341464', 'ETH'), ('5594916', 'ETH'), ('1550003', 'ETH')]}

And as per @PaulMcG's answerthe OP's requested format can be found by wrapping that in a list comprehension. So this will do it:

根据@PaulMcG 的回答,可以通过将其包装在列表理解中来找到 OP 请求的格式。所以这会做到:

result = {key: [pair[0] for pair in values],
          for key, values in groupBy(lambda pair: pair[1], input).items()}