scala 在 Spark 数据框中分解嵌套结构

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/39275816/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-10-22 08:35:48  来源:igfitidea点击:

Exploding nested Struct in Spark dataframe

scalaapache-sparkdistributed-computingspark-dataframedatabricks

提问by Feynman27

I'm working through the Databricks example. The schema for the dataframe looks like:

我正在研究 Databricks示例。数据框的架构如下所示:

> parquetDF.printSchema
root
|-- department: struct (nullable = true)
|    |-- id: string (nullable = true)
|    |-- name: string (nullable = true)
|-- employees: array (nullable = true)
|    |-- element: struct (containsNull = true)
|    |    |-- firstName: string (nullable = true)
|    |    |-- lastName: string (nullable = true)
|    |    |-- email: string (nullable = true)
|    |    |-- salary: integer (nullable = true)

In the example, they show how to explode the employees column into 4 additional columns:

在示例中,他们展示了如何将员工列分解为 4 个附加列:

val explodeDF = parquetDF.explode($"employees") { 
case Row(employee: Seq[Row]) => employee.map{ employee =>
  val firstName = employee(0).asInstanceOf[String]
  val lastName = employee(1).asInstanceOf[String]
  val email = employee(2).asInstanceOf[String]
  val salary = employee(3).asInstanceOf[Int]
  Employee(firstName, lastName, email, salary)
 }
}.cache()
display(explodeDF)

How would I do something similar with the department column (i.e. add two additional columns to the dataframe called "id" and "name")? The methods aren't exactly the same, and I can only figure out how to create a brand new data frame using:

我将如何对部门列做类似的事情(即向名为“id”和“name”的数据框添加两个额外的列)?方法并不完全相同,我只能弄清楚如何使用以下方法创建全新的数据框:

val explodeDF = parquetDF.select("department.id","department.name")
display(explodeDF)

If I try:

如果我尝试:

val explodeDF = parquetDF.explode($"department") { 
  case Row(dept: Seq[String]) => dept.map{dept => 
  val id = dept(0) 
  val name = dept(1)
  } 
}.cache()
display(explodeDF)

I get the warning and error:

我收到警告和错误:

<console>:38: warning: non-variable type argument String in type pattern Seq[String] is unchecked since it is eliminated by erasure
            case Row(dept: Seq[String]) => dept.map{dept => 
                           ^
<console>:37: error: inferred type arguments [Unit] do not conform to    method explode's type parameter bounds [A <: Product]
  val explodeDF = parquetDF.explode($"department") { 
                                   ^

采纳答案by gsamaras

You could use something like that:

你可以使用类似的东西:

var explodeDF = explodeDF.withColumn("id", explodeDF("department.id"))
explodeDeptDF = explodeDeptDF.withColumn("name", explodeDeptDF("department.name"))

which you helped me into and these questions:

你帮助我解决了这些问题:

回答by DHARIN PAREKH

In my opinion the most elegant solution is to star expand a Struct using a select operator as shown below:

在我看来,最优雅的解决方案是使用 select 运算符对 Struct 进行星形扩展,如下所示:

var explodedDf2 = explodedDf.select("department.*","*")

https://docs.databricks.com/spark/latest/spark-sql/complex-types.html

https://docs.databricks.com/spark/latest/spark-sql/complex-types.html

回答by Feynman27

This seems to work (though maybe not the most elegant solution).

这似乎有效(尽管可能不是最优雅的解决方案)。

var explodeDF2 = explodeDF.withColumn("id", explodeDF("department.id"))
explodeDF2 = explodeDF2.withColumn("name", explodeDF2("department.name"))