Python 提取熊猫中日期时间类型列的第一天
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/45304531/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Extracting the first day of month of a datetime type column in pandas
提问by chessosapiens
I have the following dataframe:
我有以下数据框:
user_id purchase_date
1 2015-01-23 14:05:21
2 2015-02-05 05:07:30
3 2015-02-18 17:08:51
4 2015-03-21 17:07:30
5 2015-03-11 18:32:56
6 2015-03-03 11:02:30
and purchase_date
is a datetime64[ns]
column. I need to add a new column df[month]
that contains first day of the month of the purchase date:
并且purchase_date
是一datetime64[ns]
列。我需要添加一个df[month]
包含购买日期月份第一天的新列:
df['month']
2015-01-01
2015-02-01
2015-02-01
2015-03-01
2015-03-01
2015-03-01
I'm looking for something like DATE_FORMAT(purchase_date, "%Y-%m-01") m
in SQL. I have tried the following code:
我正在寻找类似DATE_FORMAT(purchase_date, "%Y-%m-01") m
SQL 的东西。我尝试了以下代码:
df['month']=df['purchase_date'].apply(lambda x : x.replace(day=1))
It works somehow but returns: 2015-01-01 14:05:21
.
它以某种方式工作但返回:2015-01-01 14:05:21
。
回答by jezrael
Simpliest and fastest is convert to numpy array
by values
and then cast:
最简单和最快的是转换为numpy array
byvalues
然后转换:
df['month'] = df['purchase_date'].values.astype('datetime64[M]')
print (df)
user_id purchase_date month
0 1 2015-01-23 14:05:21 2015-01-01
1 2 2015-02-05 05:07:30 2015-02-01
2 3 2015-02-18 17:08:51 2015-02-01
3 4 2015-03-21 17:07:30 2015-03-01
4 5 2015-03-11 18:32:56 2015-03-01
5 6 2015-03-03 11:02:30 2015-03-01
Another solution with floor
and pd.offsets.MonthBegin(0)
:
使用floor
和的另一种解决方案pd.offsets.MonthBegin(0)
:
df['month'] = df['purchase_date'].dt.floor('d') - pd.offsets.MonthBegin(1)
print (df)
user_id purchase_date month
0 1 2015-01-23 14:05:21 2015-01-01
1 2 2015-02-05 05:07:30 2015-02-01
2 3 2015-02-18 17:08:51 2015-02-01
3 4 2015-03-21 17:07:30 2015-03-01
4 5 2015-03-11 18:32:56 2015-03-01
5 6 2015-03-03 11:02:30 2015-03-01
df['month'] = (df['purchase_date'] - pd.offsets.MonthBegin(1)).dt.floor('d')
print (df)
user_id purchase_date month
0 1 2015-01-23 14:05:21 2015-01-01
1 2 2015-02-05 05:07:30 2015-02-01
2 3 2015-02-18 17:08:51 2015-02-01
3 4 2015-03-21 17:07:30 2015-03-01
4 5 2015-03-11 18:32:56 2015-03-01
5 6 2015-03-03 11:02:30 2015-03-01
Last solution is create month period
by to_period
:
最后一个解决方案是month period
通过to_period
以下方式创建的:
df['month'] = df['purchase_date'].dt.to_period('M')
print (df)
user_id purchase_date month
0 1 2015-01-23 14:05:21 2015-01
1 2 2015-02-05 05:07:30 2015-02
2 3 2015-02-18 17:08:51 2015-02
3 4 2015-03-21 17:07:30 2015-03
4 5 2015-03-11 18:32:56 2015-03
5 6 2015-03-03 11:02:30 2015-03
... and then to datetimes
by to_timestamp
, but it is a bit slowier:
...然后 to datetimes
by to_timestamp
,但它有点慢:
df['month'] = df['purchase_date'].dt.to_period('M').dt.to_timestamp()
print (df)
user_id purchase_date month
0 1 2015-01-23 14:05:21 2015-01-01
1 2 2015-02-05 05:07:30 2015-02-01
2 3 2015-02-18 17:08:51 2015-02-01
3 4 2015-03-21 17:07:30 2015-03-01
4 5 2015-03-11 18:32:56 2015-03-01
5 6 2015-03-03 11:02:30 2015-03-01
There are many solutions, so:
有很多解决方案,所以:
Timings:
时间:
rng = pd.date_range('1980-04-03 15:41:12', periods=100000, freq='20H')
df = pd.DataFrame({'purchase_date': rng})
print (df.head())
In [300]: %timeit df['month1'] = df['purchase_date'].values.astype('datetime64[M]')
100 loops, best of 3: 9.2 ms per loop
In [301]: %timeit df['month2'] = df['purchase_date'].dt.floor('d') - pd.offsets.MonthBegin(1)
100 loops, best of 3: 15.9 ms per loop
In [302]: %timeit df['month3'] = (df['purchase_date'] - pd.offsets.MonthBegin(1)).dt.floor('d')
100 loops, best of 3: 12.8 ms per loop
In [303]: %timeit df['month4'] = df['purchase_date'].dt.to_period('M').dt.to_timestamp()
1 loop, best of 3: 399 ms per loop
#MaxU solution
In [304]: %timeit df['month5'] = df['purchase_date'].dt.normalize() - pd.offsets.MonthBegin(1)
10 loops, best of 3: 24.9 ms per loop
#MaxU solution 2
In [305]: %timeit df['month'] = df['purchase_date'] - pd.offsets.MonthBegin(1, normalize=True)
10 loops, best of 3: 28.9 ms per loop
#Wen solution
In [306]: %timeit df['month6']= pd.to_datetime(df.purchase_date.astype(str).str[0:7]+'-01')
1 loop, best of 3: 214 ms per loop
回答by MaxU
We can use date offsetin conjunction with Series.dt.normalize:
我们可以将日期偏移量与Series.dt.normalize结合使用:
In [60]: df['month'] = df['purchase_date'].dt.normalize() - pd.offsets.MonthBegin(1)
In [61]: df
Out[61]:
user_id purchase_date month
0 1 2015-01-23 14:05:21 2015-01-01
1 2 2015-02-05 05:07:30 2015-02-01
2 3 2015-02-18 17:08:51 2015-02-01
3 4 2015-03-21 17:07:30 2015-03-01
4 5 2015-03-11 18:32:56 2015-03-01
5 6 2015-03-03 11:02:30 2015-03-01
Or much nicer solution from @BradSolomon
In [95]: df['month'] = df['purchase_date'] - pd.offsets.MonthBegin(1, normalize=True)
In [96]: df
Out[96]:
user_id purchase_date month
0 1 2015-01-23 14:05:21 2015-01-01
1 2 2015-02-05 05:07:30 2015-02-01
2 3 2015-02-18 17:08:51 2015-02-01
3 4 2015-03-21 17:07:30 2015-03-01
4 5 2015-03-11 18:32:56 2015-03-01
5 6 2015-03-03 11:02:30 2015-03-01
回答by YOBEN_S
Try this ..
尝试这个 ..
df['month']=pd.to_datetime(df.purchase_date.astype(str).str[0:7]+'-01')
Out[187]:
user_id purchase_date month
0 1 2015-01-23 14:05:21 2015-01-01
1 2 2015-02-05 05:07:30 2015-02-01
2 3 2015-02-18 17:08:51 2015-02-01
3 4 2015-03-21 17:07:30 2015-03-01
4 5 2015-03-11 18:32:56 2015-03-01
5 6 2015-03-03 11:02:30 2015-03-01
回答by kadee
Most proposed solutions don't work for the first day of the month.
大多数提议的解决方案在当月的第一天不起作用。
Following solution works for any day of the month:
以下解决方案适用于一个月中的任何一天:
df['month'] = df['purchase_date'] + pd.offsets.MonthEnd(0) - pd.offsets.MonthBegin(normalize=True)
[EDIT]
[编辑]
Another, more readable, solution is:
另一个更具可读性的解决方案是:
from pandas.tseries.offsets import MonthBegin
df['month'] = df['purchase_date'].dt.normalize().map(MonthBegin().rollback)
Be aware not to use:
注意不要使用:
df['month'] = df['purchase_date'].map(MonthBegin(normalize=True).rollback)
because that gives incorrect results for the first day due to a bug: https://github.com/pandas-dev/pandas/issues/32616
因为由于错误导致第一天的结果不正确:https: //github.com/pandas-dev/pandas/issues/32616
回答by pomber
For me df['purchase_date'] - pd.offsets.MonthBegin(1)
didn't work (it fails for the first day of the month), so I'm subtracting the days of the month like this:
对我来说df['purchase_date'] - pd.offsets.MonthBegin(1)
没有用(它在一个月的第一天失败),所以我像这样减去一个月的天数:
df['purchase_date'] - pd.to_timedelta(df['purchase_date'].dt.day - 1, unit='d')
回答by mfeyx
To extract the first day of every month, you could write a little helper function that will also work if the provided date is already the first of month. The function looks like this:
要提取每个月的第一天,您可以编写一个小辅助函数,如果提供的日期已经是月的第一天,该函数也可以使用。该函数如下所示:
def first_of_month(date):
return date + pd.offsets.MonthEnd(-1) + pd.offsets.Day(1)
You can apply
this function on pd.Series
:
您可以在apply
以下功能上使用此功能pd.Series
:
df['month'] = df['purchase_date'].apply(first_of_month)
With that you will get the month
column as a Timestamp
. If you need a specific format, you might convert it with the strftime()
method.
有了它,您将获得该month
列作为Timestamp
. 如果您需要特定格式,您可以使用该strftime()
方法进行转换。
df['month_str'] = df['month'].dt.strftime('%Y-%m-%d')
回答by igorkf
How about this easy solution?
As purchase_date
is already in datetime64[ns]
format, you can use strftimeto format the date to always have the first day of month.
这个简单的解决方案怎么样?
由于purchase_date
已经采用datetime64[ns]
格式,您可以使用strftime将日期格式化为始终为月份的第一天。
df['date'] = df['purchase_date'].apply(lambda x: x.strftime('%Y-%m-01'))
print(df)
user_id purchase_date date
0 1 2015-01-23 14:05:21 2015-01-01
1 2 2015-02-05 05:07:30 2015-02-01
2 3 2015-02-18 17:08:51 2015-02-01
3 4 2015-03-21 17:07:30 2015-03-01
4 5 2015-03-11 18:32:56 2015-03-01
5 6 2015-03-03 11:02:30 2015-03-01
Because we used strftime
, now the date
column is in object
(string) type:
因为我们使用了strftime
,现在该date
列是object
(字符串)类型:
print(df.dtypes)
user_id int64
purchase_date datetime64[ns]
date object
dtype: object
Now if you want it to be in datetime64[ns]
, just use pd.to_datetime():
现在,如果您希望它在 中datetime64[ns]
,只需使用pd.to_datetime():
df['date'] = pd.to_datetime(df['date'])
print(df.dtypes)
user_id int64
purchase_date datetime64[ns]
date datetime64[ns]
dtype: object
回答by Shibu VM
@Eyal: This is what I did to get the first day of the month using pd.offsets.MonthBegin
and handle the scenario where day is already first day of month.
@Eyal:这就是我使用pd.offsets.MonthBegin
和处理当月的第一天已经是第一天的情况时所做的。
import datetime
from_date= pd.to_datetime('2018-12-01')
from_date = from_date - pd.offsets.MonthBegin(1, normalize=True) if not from_date.is_month_start else from_date
from_date
result: Timestamp('2018-12-01 00:00:00')
结果: Timestamp('2018-12-01 00:00:00')
from_date= pd.to_datetime('2018-12-05')
from_date = from_date - pd.offsets.MonthBegin(1, normalize=True) if not rom_date.is_month_start else from_date
from_date
result: Timestamp('2018-12-01 00:00:00')
结果: Timestamp('2018-12-01 00:00:00')