Python 从 Numpy 数组创建 Pandas DataFrame:如何指定索引列和列标题?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/20763012/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 21:10:01  来源:igfitidea点击:

Creating a Pandas DataFrame from a Numpy array: How do I specify the index column and column headers?

pythonpandasnumpy

提问by user3132783

I have a Numpy array consisting of a list of lists, representing a two-dimensional array with row labels and column names as shown below:

我有一个由列表列表组成的 Numpy 数组,代表一个二维数组,其中包含行标签和列名,如下所示:

data = array([['','Col1','Col2'],['Row1',1,2],['Row2',3,4]])

I'd like the resulting DataFrame to have Row1 and Row2 as index values, and Col1, Col2 as header values

我希望生成的 DataFrame 将 Row1 和 Row2 作为索引值,并将 Col1、Col2 作为标题值

I can specify the index as follows:

我可以按如下方式指定索引:

df = pd.DataFrame(data,index=data[:,0]),

however I am unsure how to best assign column headers.

但是我不确定如何最好地分配列标题。

采纳答案by behzad.nouri

You need to specify data, indexand columnsto DataFrameconstructor, as in:

您需要指定dataindexcolumnsDataFrame构造函数,如:

>>> pd.DataFrame(data=data[1:,1:],    # values
...              index=data[1:,0],    # 1st column as index
...              columns=data[0,1:])  # 1st row as the column names

edit: as in the @joris comment, you may need to change above to np.int_(data[1:,1:])to have correct data type.

编辑:在@joris 评论中,您可能需要更改上面的内容np.int_(data[1:,1:])以获得正确的数据类型。

回答by ryanjdillon

I agree with Joris; it seems like you should be doing this differently, like with numpy record arrays. Modifying "option 2" from this great answer, you could do it like this:

我同意乔里斯的观点;似乎您应该以不同的方式执行此操作,就像使用numpy record arrays 一样。从这个很好的答案中修改“选项 2” ,你可以这样做:

import pandas
import numpy

dtype = [('Col1','int32'), ('Col2','float32'), ('Col3','float32')]
values = numpy.zeros(20, dtype=dtype)
index = ['Row'+str(i) for i in range(1, len(values)+1)]

df = pandas.DataFrame(values, index=index)

回答by Jagannath Banerjee

Here is an easy to understand solution

这是一个易于理解的解决方案

import numpy as np
import pandas as pd

# Creating a 2 dimensional numpy array
>>> data = np.array([[5.8, 2.8], [6.0, 2.2]])
>>> print(data)
>>> data
array([[5.8, 2.8],
       [6. , 2.2]])

# Creating pandas dataframe from numpy array
>>> dataset = pd.DataFrame({'Column1': data[:, 0], 'Column2': data[:, 1]})
>>> print(dataset)
   Column1  Column2
0      5.8      2.8
1      6.0      2.2

回答by Aadil Srivastava

This can be done simply by using from_records of pandas DataFrame

这可以通过使用 Pandas DataFrame 的 from_records 来完成

import numpy as np
import pandas as pd
# Creating a numpy array
x = np.arange(1,10,1).reshape(-1,1)
dataframe = pd.DataFrame.from_records(x)

回答by javadba

Adding to @behzad.nouri 's answer - we can create a helper routine to handle this common scenario:

添加到@behzad.nouri 的答案 - 我们可以创建一个辅助程序来处理这种常见情况:

def csvDf(dat,**kwargs): 
  from numpy import array
  data = array(dat)
  if data is None or len(data)==0 or len(data[0])==0:
    return None
  else:
    return pd.DataFrame(data[1:,1:],index=data[1:,0],columns=data[0,1:],**kwargs)

Let's try it out:

让我们试试看:

data = [['','a','b','c'],['row1','row1cola','row1colb','row1colc'],
     ['row2','row2cola','row2colb','row2colc'],['row3','row3cola','row3colb','row3colc']]
csvDf(data)

In [61]: csvDf(data)
Out[61]:
             a         b         c
row1  row1cola  row1colb  row1colc
row2  row2cola  row2colb  row2colc
row3  row3cola  row3colb  row3colc

回答by Rahul Verma

    >>import pandas as pd
    >>import numpy as np
    >>data.shape
    (480,193)
    >>type(data)
    numpy.ndarray
    >>df=pd.DataFrame(data=data[0:,0:],
    ...        index=[i for i in range(data.shape[0])],
    ...        columns=['f'+str(i) for i in range(data.shape[1])])
    >>df.head()
    [![array to dataframe][1]][1]

enter image description here

在此处输入图片说明