在 Python Pandas 中将列转换为行
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/41861846/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Convert column to row in Python Pandas
提问by Reise45
I have the following Python pandas dataframe:
我有以下 Python 熊猫数据框:
fruits | numFruits
---------------------
0 | apples | 10
1 | grapes | 20
2 | figs | 15
I want:
我想要:
apples | grapes | figs
-----------------------------------------
Market 1 Order | 10 | 20 | 15
I have looked at pivot(), pivot_table(), Transpose and unstack() and none of them seem to give me this. Pandas newbie, so all help appreciated.
我看过pivot()、pivot_table()、Transpose和unstack(),但似乎没有一个给我这个。熊猫新手,所以感谢所有帮助。
回答by jezrael
You need set_index
with transpose by T
:
print (df.set_index('fruits').T)
fruits apples grapes figs
numFruits 10 20 15
If need rename columns, it is a bit complicated:
如果需要重命名列,有点复杂:
print (df.rename(columns={'numFruits':'Market 1 Order'})
.set_index('fruits')
.rename_axis(None).T)
apples grapes figs
Market 1 Order 10 20 15
Another faster solution is use numpy.ndarray.reshape
:
另一个更快的解决方案是使用numpy.ndarray.reshape
:
print (pd.DataFrame(df.numFruits.values.reshape(1,-1),
index=['Market 1 Order'],
columns=df.fruits.values))
apples grapes figs
Market 1 Order 10 20 15
Timings:
时间:
#[30000 rows x 2 columns]
df = pd.concat([df]*10000).reset_index(drop=True)
print (df)
In [55]: %timeit (pd.DataFrame([df.numFruits.values], ['Market 1 Order'], df.fruits.values))
1 loop, best of 3: 2.4 s per loop
In [56]: %timeit (pd.DataFrame(df.numFruits.values.reshape(1,-1), index=['Market 1 Order'], columns=df.fruits.values))
The slowest run took 5.64 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 424 μs per loop
In [57]: %timeit (df.rename(columns={'numFruits':'Market 1 Order'}).set_index('fruits').rename_axis(None).T)
100 loops, best of 3: 1.94 ms per loop
回答by piRSquared
pd.DataFrame([df.numFruits.values], ['Market 1 Order'], df.fruits.values)
apples grapes figs
Market 1 Order 10 20 15
Refer to jezrael's enhancement of this concept. df.numFruits.values.reshape(1, -1)
is more efficient.
参考 jezrael 对这个概念的增强。 df.numFruits.values.reshape(1, -1)
效率更高。
回答by Akash Desarda
You can use transpose api of pandas as follow:
您可以使用熊猫的转置 api 如下:
df.transpose()
Considering df as your pandas dataframe
将 df 视为您的熊猫数据框