如何计算 Pandas DataFrame 上的滚动累积积

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/15295434/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 20:41:47  来源:igfitidea点击:

How to calculate rolling cumulative product on Pandas DataFrame

pythonpandastime-seriesfinance

提问by AP228

I have a time series of returns, rolling beta, and rolling alpha in a pandas DataFrame. How can I calculate a rolling annualized alpha for the alpha column of the DataFrame? (I want to do the equivalent to =PRODUCT(1+[trailing 12 months])-1 in excel)

我在 Pandas DataFrame 中有一个时间序列的回报、滚动 beta 和滚动 alpha。如何计算 DataFrame 的 alpha 列的滚动年化 alpha?(我想在 excel 中做等效于 =PRODUCT(1+[trailing 12 months])-1 的操作)

            SPX Index BBOEGEUS Index    Beta      Alpha
2006-07-31   0.005086    0.001910    1.177977   -0.004081
2006-08-31   0.021274    0.028854    1.167670    0.004012
2006-09-30   0.024566    0.009769    1.101618   -0.017293
2006-10-31   0.031508    0.030692    1.060355   -0.002717
2006-11-30   0.016467    0.031720    1.127585    0.013153

I was surprised to see that there was no "rolling" function built into pandas for this, but I was hoping somebody could help with a function that I can then apply to the df['Alpha'] column using pd.rolling_apply.

我很惊讶地看到 Pandas 中没有为此内置“滚动”函数,但我希望有人可以帮助我提供一个函数,然后我可以使用 pd.rolling_apply 将其应用于 df['Alpha'] 列。

Thanks in advance for any help you have to offer.

预先感谢您提供的任何帮助。

回答by herrfz

will this do?

这行吗?

import pandas as pd
import numpy as np

# your DataFrame; df = ...

pd.rolling_apply(df, 12, lambda x: np.prod(1 + x) - 1)

回答by YaOzI

rolling_applyhas been dropped in pandas and replaced by more versatile window methods(e.g. rolling()etc.)

rolling_apply已在 Pandas 中删除并被更通用的窗口方法取代 (例如rolling()等)

# Both agg and apply will give you the same answer
(1+df).rolling(window=12).agg(np.prod) - 1
# BUT apply(raw=True) will be much FASTER!
(1+df).rolling(window=12).apply(np.prod, raw=True) - 1

回答by Zellint

It will be a bit faster, if you move those +/-1 out of df, like this:

如果您将 +/-1 移出 ,它会更快一点df,如下所示:

cumprod = (1.+df).rolling(window=12).agg(lambda x : x.prod()) -1