Pandas concat DataFrames - 保持索引的原始顺序
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/42361589/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas concat DataFrames - keep original order of index
提问by warrenfitzhenry
I am trying to concat two dataframes:
我正在尝试连接两个数据框:
df2:
CU Pmt 2017-02-01
h b 15
h d 12
h a 13
and df1:
和 df1:
CU Pmt 'Total/Max/Min'
h b 20
h d 23
h a 22
a b 16
a d 13
a a 14
such that df3:
这样df3:
CU Pmt 2017-02-01 2017-02-02
h b 15 20
h d 12 23
h a 13 22
a b NaN 16
a d NaN 13
a a Nan 14
I am using a multi index of index_col = [0,1] for both
我对两者都使用了 index_col = [0,1] 的多索引
This is what I have:
这就是我所拥有的:
date = '2017-02-02'
df1 = pd.read_csv(r'Data17-0217-02-02\Aggregated\Aggregated_Daily_All.csv', usecols=['CU', 'Parameters', 'Total/Max/Min'], index_col =[0,1])
df1 = df1.rename(columns = {'Total/Max/Min':date})
df2 = pd.read_csv(r'Data17-02\MonthlyData\February2017.csv', index_col = [0,1])
df3 = pd.concat([df2, df1], axis=1)
df3.to_csv(r'Data17-02\MonthlyData\February2017.csv')
However, df3 is coming out as:
但是,df3 的结果是:
CU Pmt 2017-02-01 2017-02-02
a a NaN 14
a b NaN 16
a d Nan 13
h a 13 22
h b 15 20
h d 12 23
Which has CU
and Pmt
(the two index columns) in alphabetical order. How is it possible to keep the original order, so that for all new indexes added for a new date, they are added at the bottom?
其中有CU
和Pmt
(两个索引列)按字母顺序排列。如何保持原始顺序,以便为新日期添加的所有新索引都添加到底部?