Python 在几个 DataFrame 列上运行 get_dummies?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/24109779/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 04:00:06  来源:igfitidea点击:

Running get_dummies on several DataFrame columns?

pythonpandasdataframeone-hot-encoding

提问by Emre

How can one idiomatically run a function like get_dummies, which expects a single column and returns several, on multiple DataFrame columns?

如何get_dummies在多个 DataFrame 列上惯用地运行像 那样的函数,它需要一个列并返回多个?

采纳答案by bold

With pandas 0.19, you can do that in a single line :

使用pandas 0.19,您可以在一行中完成:

pd.get_dummies(data=df, columns=['A', 'B'])

Columnsspecifies where to do the One Hot Encoding.

Columns指定在何处执行 One Hot Encoding。

>>> df
   A  B  C
0  a  c  1
1  b  c  2
2  a  b  3

>>> pd.get_dummies(data=df, columns=['A', 'B'])
   C  A_a  A_b  B_b  B_c
0  1  1.0  0.0  0.0  1.0
1  2  0.0  1.0  0.0  1.0
2  3  1.0  0.0  1.0  0.0

回答by joris

Since pandas version 0.15.0, pd.get_dummiescan handle a DataFrame directly (before that, it could only handle a single Series, and see below for the workaround):

从 pandas pd.get_dummies0.15.0版本开始,可以直接处理 DataFrame(在此之前,它只能处理单个系列,解决方法见下文):

In [1]: df = DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
   ...:                 'C': [1, 2, 3]})

In [2]: df
Out[2]:
   A  B  C
0  a  c  1
1  b  c  2
2  a  b  3

In [3]: pd.get_dummies(df)
Out[3]:
   C  A_a  A_b  B_b  B_c
0  1    1    0    0    1
1  2    0    1    0    1
2  3    1    0    1    0


Workaround for pandas < 0.15.0

熊猫 < 0.15.0 的解决方法

You can do it for each column seperate and then concat the results:

您可以对每一列进行单独的操作,然后连接结果:

In [111]: df
Out[111]: 
   A  B
0  a  x
1  a  y
2  b  z
3  b  x
4  c  x
5  a  y
6  b  y
7  c  z

In [112]: pd.concat([pd.get_dummies(df[col]) for col in df], axis=1, keys=df.columns)
Out[112]: 
   A        B      
   a  b  c  x  y  z
0  1  0  0  1  0  0
1  1  0  0  0  1  0
2  0  1  0  0  0  1
3  0  1  0  1  0  0
4  0  0  1  1  0  0
5  1  0  0  0  1  0
6  0  1  0  0  1  0
7  0  0  1  0  0  1

If you don't want the multi-index column, then remove the keys=..from the concat function call.

如果您不想要多索引列,keys=..则从 concat 函数调用中删除。

回答by chrisb

Somebody may have something more clever, but here are two approaches. Assuming you have a dataframe named dfwith columns 'Name' and 'Year' you want dummies for.

有人可能有更聪明的方法,但这里有两种方法。假设您有一个以df列“名称”和“年份”命名的数据框,您需要为其设置假人。

First, simply iterating over the columns isn't too bad:

首先,简单地遍历列还不错:

In [93]: for column in ['Name', 'Year']:
    ...:     dummies = pd.get_dummies(df[column])
    ...:     df[dummies.columns] = dummies

Another idea would be to use the patsypackage, which is designed to construct data matrices from R-type formulas.

另一个想法是使用patsy包,该包旨在从 R 型公式构建数据矩阵。

In [94]: patsy.dmatrix(' ~ C(Name) + C(Year)', df, return_type="dataframe")

回答by sapo_cosmico

Unless I don't understand the question, it is supported natively in get_dummiesby passing the columns argument.

除非我不明白这个问题,否则get_dummies通过传递 columns 参数本身就支持它。