pandas 如何分组熊猫数据帧中的连续值
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/40802800/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 02:30:15 来源:igfitidea点击:
How to groupby consecutive values in pandas DataFrame
提问by Bryan Fok
I have a column in a DataFrame with values:
我在 DataFrame 中有一个带有值的列:
[1, 1, -1, 1, -1, -1]
How can I group them like this?
我怎样才能像这样将它们分组?
[1,1] [-1] [1] [-1, -1]
回答by jezrael
You can use groupby
by custom Series
:
您可以groupby
通过自定义使用Series
:
df = pd.DataFrame({'a': [1, 1, -1, 1, -1, -1]})
print (df)
a
0 1
1 1
2 -1
3 1
4 -1
5 -1
print ((df.a != df.a.shift()).cumsum())
0 1
1 1
2 2
3 3
4 4
5 4
Name: a, dtype: int32
for i, g in df.groupby([(df.a != df.a.shift()).cumsum()]):
print (i)
print (g)
print (g.a.tolist())
a
0 1
1 1
[1, 1]
2
a
2 -1
[-1]
3
a
3 1
[1]
4
a
4 -1
5 -1
[-1, -1]
回答by YOBEN_S
Using groupby
from itertools
data from Jez
使用groupby
从itertools
来自杰斯数据
from itertools import groupby
[ list(group) for key, group in groupby(df.a.values.tolist())]
Out[361]: [[1, 1], [-1], [1], [-1, -1]]