pandas 熊猫总和

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/48957745/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 05:13:59  来源:igfitidea点击:

Pandas sumproduct

pythonpandassumproduct

提问by TylerNG

I have a df:

我有一个 df:

Value1  Value2  1   2   3
  1       A     0   1   2
  2       B     3   4   5
  3       C     2   2   2

I want to perform sumproduct between the rows and the columns 1 2 3:

我想在行和列 1 2 3 之间执行 sumproduct:

Value1  Value2  1   2   3   sumproduct
  1       A     0   1   2   8    = 0*1 + 1*2 + 2*3
  2       B     3   4   5   26   = 3*1 + 4*2 + 5*3
  3       C     2   2   2   12   = 2*1 + 2*2 + 2*3

I've tried (df.values*df.columns.values).sum(1)but then I need to drop Value1and Value2columns first. Is there a better approach?

我已经试过了,(df.values*df.columns.values).sum(1)但后来我需要先删除Value1Value2列。有没有更好的方法?

Many thanks!

非常感谢!

采纳答案by biniow

df = pd.DataFrame({'1': [0, 3, 2], '2': [1, 4, 2], '3': [2, 5, 2]})    
df['sumproduct'] = df[1] * 1 + df[2] * 2 + df[3] * 3

UPDATE for generic case

更新通用案例

valid_columns = [col for col in df.columns if col.isdigit()]
df['sumproduct'] = (df[valid_columns] * [int(x) for x in valid_columns]).sum(axis=1)

回答by YOBEN_S

What I will do

我将要做的

df.iloc[:,2:].dot([1,2,3])
Out[239]: 
0     8
1    26
2    12
dtype: int64

To make it automatic

让它自动

s=df.iloc[:,2:]

s.dot(s.columns.astype(int))
Out[242]: 
0     8
1    26
2    12
dtype: int64

回答by ilia timofeev

(df[['1','2','3']]*[1,2,3]).sum(axis=1)

Output:

输出:

0   8
1   26
2   12

Update:Universal approach

更新:通用方法

col = pd.to_numeric(df.columns,errors='coer')
(df[df.columns[~pd.isnull(col)]]*col.dropna()).sum(axis=1) 

回答by David Leon

arr = [0]*len(df)
for i, v in enumerate([c for c in df.columns if not isinstance(c,str)]):
    arr = arr + df[v]*v

df['sumproduct'] = arr

or even:

甚至:

cols = [c for c in df.columns if not isinstance(c, str)]
# or as @ilia
cols = pd.to_numeric(df.columns,errors='coerce').dropna()

df[cols].apply(lambda x: x*x.name).sum(axis='columns')