从n返回k个元素的所有组合的算法
我想编写一个函数,该函数采用字母数组作为参数,并选择多个字母。
假设我们提供8个字母组成的数组,并希望从中选择3个字母。然后我们将获得:
8! / ((8 - 3)! * 3!) = 56
返回由3个字母组成的数组(或者单词)。
解决方案
《计算机编程艺术》第4卷:分册3比我所描述的更适合特定情况。
格雷码
我们会遇到的一个问题当然是内存,而且很快,集合-20C3 = 1140中的20个元素就会有问题。而且,如果要遍历集合,最好使用修改后的格雷码算法,因此我们并没有将所有这些都保留在内存中。这些将根据之前的内容生成下一个组合,并避免重复。其中有许多用于不同用途。我们是否要最大化连续组合之间的差异?最小化?等等。
一些描述格雷码的原始论文:
- 某些汉密尔顿路径和最小变化算法
- 相邻立交组合生成算法
以下是涉及该主题的其他一些论文:
- Eades,Hickey,Read相邻互换组合生成算法(PDF,带有Pascal中的代码)的有效实现
- 组合发电机
- 组合格雷码调查(PostScript)
- 格雷码算法
蔡斯的小提琴(算法)
菲利普·J·蔡斯(Phillip J Chase),"算法382:N个对象中的M个组合"(1970年)
C语言中的算法
词典顺序的组合索引(Buckles算法515)
我们也可以按组合索引(按字典顺序)引用组合。意识到索引应该是基于索引从右到左的一些变化,我们可以构造一些应该恢复组合的东西。
因此,我们有一组{1,2,3,4,5,6} ...并且我们想要三个元素。假设{1,2,3},我们可以说元素之间的差异是一个,并且顺序是最小的。 {1,2,4}有一个变化,按字典顺序是数字2. 因此,最后一位的"变化"数量说明了字典顺序中的一个变化。发生变化的第二个位置{1,3,4}发生了一个变化,但是由于它位于第二位(与原始集合中元素的数量成正比),因此说明了更多的变化。
我所描述的方法似乎是一种解构,从设置到索引,我们需要做相反的事情-这要复杂得多。这是扣具解决问题的方式。我写了一些C来计算它们,并做了些微改动-我使用集合的索引而不是数字范围来表示集合,因此我们始终从0 ... n开始工作。
笔记:
- 由于组合是无序的,因此{1,3,2} = {1,2,3}-我们将它们排序为词典顺序。
- 此方法具有一个隐式0,以开始第一个差异的集合。
词典顺序的组合索引(McCaffrey)
还有另一种方法:它的概念更易于掌握和编程,但是却没有优化Buckles。幸运的是,它也不会产生重复的组合:
最大化的集合,其中<img src =" https://i.stack.imgur.com/vIeiI.gif" alt =" C(n,r)= {n选择r}">。
例如:27 = C(6,4)+ C(5,3)+ C(2,2)+ C(1,1)
。因此,第四项的第27个字典组合为:{1,2,5,6},这些是我们要查看的任何集合的索引。下面的示例(OCaml)需要choose
函数,留给读者:
(* this will find the [x] combination of a [set] list when taking [k] elements *) let combination_maccaffery set k x = (* maximize function -- maximize a that is aCb *) (* return largest c where c < i and choose(c,i) <= z *) let rec maximize a b x = if (choose a b ) <= x then a else maximize (a-1) b x in let rec iterate n x i = match i with | 0 -> [] | i -> let max = maximize n i x in max :: iterate n (x - (choose max i)) (i-1) in if x < 0 then failwith "errors" else let idxs = iterate (List.length set) x k in List.map (List.nth set) (List.sort (-) idxs)
假设字母数组如下所示:" ABCDEFGH"。我们有三个索引(i,j,k),它们指示当前单词要使用的字母,我们从以下位置开始:
A B C D E F G H ^ ^ ^ i j k
首先,我们改变k,所以下一步看起来像这样:
A B C D E F G H ^ ^ ^ i j k
如果到达末尾,则继续并依次改变j和k。
A B C D E F G H ^ ^ ^ i j k A B C D E F G H ^ ^ ^ i j k
一旦我们达到G,我们也将开始改变i。
A B C D E F G H ^ ^ ^ i j k A B C D E F G H ^ ^ ^ i j k ...
用代码写的看起来像这样
void print_combinations(const char *string) { int i, j, k; int len = strlen(string); for (i = 0; i < len - 2; i++) { for (j = i + 1; j < len - 1; j++) { for (k = j + 1; k < len; k++) printf("%c%c%c\n", string[i], string[j], string[k]); } } }
static IEnumerable<string> Combinations(List<string> characters, int length) { for (int i = 0; i < characters.Count; i++) { // only want 1 character, just return this one if (length == 1) yield return characters[i]; // want more than one character, return this one plus all combinations one shorter // only use characters after the current one for the rest of the combinations else foreach (string next in Combinations(characters.GetRange(i + 1, characters.Count - (i + 1)), length - 1)) yield return characters[i] + next; } }
如果我们可以使用SQL语法说,如果我们正在使用LINQ来访问结构或者数组的字段,或者直接访问具有仅包含一个字符字段" Letter"的名为" Alphabet"的表的数据库,则可以改编以下代码:
SELECT A.Letter, B.Letter, C.Letter FROM Alphabet AS A, Alphabet AS B, Alphabet AS C WHERE A.Letter<>B.Letter AND A.Letter<>C.Letter AND B.Letter<>C.Letter AND A.Letter<B.Letter AND B.Letter<C.Letter
即使我们在"字母"表中有多少个字母(也可以是3、8、10、27等),这将返回3个字母的所有组合。
如果我们想要的是所有排列,而不是组合(即我们希望" ACB"和" ABC"算作不同,而不是只出现一次),只需删除最后一行(AND),即可完成。
编辑后:重新阅读问题后,我意识到需要的是通用算法,而不仅仅是选择3个项目的特定算法。亚当·休斯(Adam Hughes)的回答是完整的,很遗憾,我还不能投票赞成。这个答案很简单,但仅适用于我们只需要3个项目的情况。
以下递归算法从有序集合中选择所有k元素组合:
- 选择组合的第一个元素" i"
- 将" i"与从大于" i"的元素集中递归选择的" k-1"个元素的每种组合结合起来。
对集合中的每个i
进行上述迭代。
必须选择大于" i"的其余元素,以避免重复。这样,[3,5]将仅被选择一次,因为[3]与[5]组合,而不是两次(条件消除了[5] + [3])。没有这种条件,我们将获得变化而不是组合。
这是我在C ++中的主张
我试图对迭代器类型施加尽可能小的限制,因此此解决方案仅假定转发迭代器,并且它可以是const_iterator。这适用于任何标准容器。如果参数没有意义,则抛出std :: invalid_argumnent
#include <vector> #include <stdexcept> template <typename Fci> // Fci - forward const iterator std::vector<std::vector<Fci> > enumerate_combinations(Fci begin, Fci end, unsigned int combination_size) { if(begin == end && combination_size > 0u) throw std::invalid_argument("empty set and positive combination size!"); std::vector<std::vector<Fci> > result; // empty set of combinations if(combination_size == 0u) return result; // there is exactly one combination of // size 0 - emty set std::vector<Fci> current_combination; current_combination.reserve(combination_size + 1u); // I reserve one aditional slot // in my vector to store // the end sentinel there. // The code is cleaner thanks to that for(unsigned int i = 0u; i < combination_size && begin != end; ++i, ++begin) { current_combination.push_back(begin); // Construction of the first combination } // Since I assume the itarators support only incrementing, I have to iterate over // the set to get its size, which is expensive. Here I had to itrate anyway to // produce the first cobination, so I use the loop to also check the size. if(current_combination.size() < combination_size) throw std::invalid_argument("combination size > set size!"); result.push_back(current_combination); // Store the first combination in the results set current_combination.push_back(end); // Here I add mentioned earlier sentinel to // simplyfy rest of the code. If I did it // earlier, previous statement would get ugly. while(true) { unsigned int i = combination_size; Fci tmp; // Thanks to the sentinel I can find first do // iterator to change, simply by scaning { // from right to left and looking for the tmp = current_combination[--i]; // first "bubble". The fact, that it's ++tmp; // a forward iterator makes it ugly but I } // can't help it. while(i > 0u && tmp == current_combination[i + 1u]); // Here is probably my most obfuscated expression. // Loop above looks for a "bubble". If there is no "bubble", that means, that // current_combination is the last combination, Expression in the if statement // below evaluates to true and the function exits returning result. // If the "bubble" is found however, the ststement below has a sideeffect of // incrementing the first iterator to the left of the "bubble". if(++current_combination[i] == current_combination[i + 1u]) return result; // Rest of the code sets posiotons of the rest of the iterstors // (if there are any), that are to the right of the incremented one, // to form next combination while(++i < combination_size) { current_combination[i] = current_combination[i - 1u]; ++current_combination[i]; } // Below is the ugly side of using the sentinel. Well it had to haave some // disadvantage. Try without it. result.push_back(std::vector<Fci>(current_combination.begin(), current_combination.end() - 1)); } }
我在python中有一个用于项目euler的置换算法:
def missing(miss,src): "Returns the list of items in src not present in miss" return [i for i in src if i not in miss] def permutation_gen(n,l): "Generates all the permutations of n items of the l list" for i in l: if n<=1: yield [i] r = [i] for j in permutation_gen(n-1,missing([i],l)): yield r+j
如果
n<len(l)
我们应该没有重复就拥有所有需要的组合,我们需要吗?
它是一个生成器,因此我们可以在以下方式中使用它:
for comb in permutation_gen(3,list("ABCDEFGH")): print comb
在Python中,例如Andrea Ambu,但没有为选择三个而进行硬编码。
def combinations(list, k): """Choose combinations of list, choosing k elements(no repeats)""" if len(list) < k: return [] else: seq = [i for i in range(k)] while seq: print [list[index] for index in seq] seq = get_next_combination(len(list), k, seq) def get_next_combination(num_elements, k, seq): index_to_move = find_index_to_move(num_elements, seq) if index_to_move == None: return None else: seq[index_to_move] += 1 #for every element past this sequence, move it down for i, elem in enumerate(seq[(index_to_move+1):]): seq[i + 1 + index_to_move] = seq[index_to_move] + i + 1 return seq def find_index_to_move(num_elements, seq): """Tells which index should be moved""" for rev_index, elem in enumerate(reversed(seq)): if elem < (num_elements - rev_index - 1): return len(seq) - rev_index - 1 return None
我为此在SQL Server 2005中创建了一个解决方案,并将其发布在我的网站上:http://www.jessemclain.com/downloads/code/sql/fn_GetMChooseNCombos.sql.htm
这是显示用法的示例:
SELECT * FROM dbo.fn_GetMChooseNCombos('ABCD', 2, '')
结果:
Word ---- AB AC AD BC BD CD (6 row(s) affected)
在C ++中,以下例程将生成范围[first,last)之间的长度距离(first,k)的所有组合:
#include <algorithm> template <typename Iterator> bool next_combination(const Iterator first, Iterator k, const Iterator last) { /* Credits: Mark Nelson http://marknelson.us */ if ((first == last) || (first == k) || (last == k)) return false; Iterator i1 = first; Iterator i2 = last; ++i1; if (last == i1) return false; i1 = last; --i1; i1 = k; --i2; while (first != i1) { if (*--i1 < *i2) { Iterator j = k; while (!(*i1 < *j)) ++j; std::iter_swap(i1,j); ++i1; ++j; i2 = k; std::rotate(i1,j,last); while (last != j) { ++j; ++i2; } std::rotate(k,i2,last); return true; } } std::rotate(first,k,last); return false; }
可以这样使用:
#include <string> #include <iostream> int main() { std::string s = "12345"; std::size_t comb_size = 3; do { std::cout << std::string(s.begin(), s.begin() + comb_size) << std::endl; } while (next_combination(s.begin(), s.begin() + comb_size, s.end())); return 0; }
这将打印以下内容:
123 124 125 134 135 145 234 235 245 345
在C#中:
public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k) { return k == 0 ? new[] { new T[0] } : elements.SelectMany((e, i) => elements.Skip(i + 1).Combinations(k - 1).Select(c => (new[] {e}).Concat(c))); }
用法:
var result = Combinations(new[] { 1, 2, 3, 4, 5 }, 3);
结果:
123 124 125 134 135 145 234 235 245 345
这是我最近用Java写的代码,该代码计算并返回" outOf"元素中" num"元素的所有组合。
// author: Sourabh Bhat ([email protected]) public class Testing { public static void main(String[] args) { // Test case num = 5, outOf = 8. int num = 5; int outOf = 8; int[][] combinations = getCombinations(num, outOf); for (int i = 0; i < combinations.length; i++) { for (int j = 0; j < combinations[i].length; j++) { System.out.print(combinations[i][j] + " "); } System.out.println(); } } private static int[][] getCombinations(int num, int outOf) { int possibilities = get_nCr(outOf, num); int[][] combinations = new int[possibilities][num]; int arrayPointer = 0; int[] counter = new int[num]; for (int i = 0; i < num; i++) { counter[i] = i; } breakLoop: while (true) { // Initializing part for (int i = 1; i < num; i++) { if (counter[i] >= outOf - (num - 1 - i)) counter[i] = counter[i - 1] + 1; } // Testing part for (int i = 0; i < num; i++) { if (counter[i] < outOf) { continue; } else { break breakLoop; } } // Innermost part combinations[arrayPointer] = counter.clone(); arrayPointer++; // Incrementing part counter[num - 1]++; for (int i = num - 1; i >= 1; i--) { if (counter[i] >= outOf - (num - 1 - i)) counter[i - 1]++; } } return combinations; } private static int get_nCr(int n, int r) { if(r > n) { throw new ArithmeticException("r is greater then n"); } long numerator = 1; long denominator = 1; for (int i = n; i >= r + 1; i--) { numerator *= i; } for (int i = 2; i <= n - r; i++) { denominator *= i; } return (int) (numerator / denominator); } }
这是一些简单的代码,可以打印所有C(n,m)组合。它通过初始化并移动指向下一个有效组合的一组数组索引来工作。索引被初始化为指向最低的m个索引(按字典顺序,最小的组合)。然后,从第m个索引开始,我们尝试将索引向前移动。如果索引已达到其极限,则尝试使用先前的索引(一直向下到索引1)。如果我们可以向前移动索引,那么我们将重置所有更大的索引。
m=(rand()%n)+1; // m will vary from 1 to n for (i=0;i<n;i++) a[i]=i+1; // we want to print all possible C(n,m) combinations of selecting m objects out of n printf("Printing C(%d,%d) possible combinations ...\n", n,m); // This is an adhoc algo that keeps m pointers to the next valid combination for (i=0;i<m;i++) p[i]=i; // the p[.] contain indices to the a vector whose elements constitute next combination done=false; while (!done) { // print combination for (i=0;i<m;i++) printf("%2d ", a[p[i]]); printf("\n"); // update combination // method: start with p[m-1]. try to increment it. if it is already at the end, then try moving p[m-2] ahead. // if this is possible, then reset p[m-1] to 1 more than (the new) p[m-2]. // if p[m-2] can not also be moved, then try p[m-3]. move that ahead. then reset p[m-2] and p[m-1]. // repeat all the way down to p[0]. if p[0] can not also be moved, then we have generated all combinations. j=m-1; i=1; move_found=false; while ((j>=0) && !move_found) { if (p[j]<(n-i)) { move_found=true; p[j]++; // point p[j] to next index for (k=j+1;k<m;k++) { p[k]=p[j]+(k-j); } } else { j--; i++; } } if (!move_found) done=true; }
这是Scala中一个优雅的通用实现,如99 Scala Problems中所述。
object P26 { def flatMapSublists[A,B](ls: List[A])(f: (List[A]) => List[B]): List[B] = ls match { case Nil => Nil case sublist@(_ :: tail) => f(sublist) ::: flatMapSublists(tail)(f) } def combinations[A](n: Int, ls: List[A]): List[List[A]] = if (n == 0) List(Nil) else flatMapSublists(ls) { sl => combinations(n - 1, sl.tail) map {sl.head :: _} } }
我可以提出我的递归Python解决方案吗?
def choose_iter(elements, length): for i in xrange(len(elements)): if length == 1: yield (elements[i],) else: for next in choose_iter(elements[i+1:len(elements)], length-1): yield (elements[i],) + next def choose(l, k): return list(choose_iter(l, k))
用法示例:
>>> len(list(choose_iter("abcdefgh",3))) 56
我喜欢它的简单性。
在这里,我们有一个用C#编码的算法的惰性评估版:
static bool nextCombination(int[] num, int n, int k) { bool finished, changed; changed = finished = false; if (k > 0) { for (int i = k - 1; !finished && !changed; i--) { if (num[i] < (n - 1) - (k - 1) + i) { num[i]++; if (i < k - 1) { for (int j = i + 1; j < k; j++) { num[j] = num[j - 1] + 1; } } changed = true; } finished = (i == 0); } } return changed; } static IEnumerable Combinations<T>(IEnumerable<T> elements, int k) { T[] elem = elements.ToArray(); int size = elem.Length; if (k <= size) { int[] numbers = new int[k]; for (int i = 0; i < k; i++) { numbers[i] = i; } do { yield return numbers.Select(n => elem[n]); } while (nextCombination(numbers, size, k)); } }
并测试部分:
static void Main(string[] args) { int k = 3; var t = new[] { "dog", "cat", "mouse", "zebra"}; foreach (IEnumerable<string> i in Combinations(t, k)) { Console.WriteLine(string.Join(",", i)); } }
希望这对我们有所帮助!