pandas XGBoost plot_importance 不显示特征名称

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/46943314/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 04:42:06  来源:igfitidea点击:

XGBoost plot_importance doesn't show feature names

pythonpandasmachine-learningxgboost

提问by stackoverflowuser2010

I'm using XGBoost with Python and have successfully trained a model using the XGBoost train()function called on DMatrixdata. The matrix was created from a Pandas dataframe, which has feature names for the columns.

我正在将 XGBoost 与 Python 结合使用,并且已经使用train()DMatrix数据调用的 XGBoost函数成功地训练了一个模型。该矩阵是从 Pandas 数据框创建的,该数据框具有列的特征名称。

Xtrain, Xval, ytrain, yval = train_test_split(df[feature_names], y, \
                                    test_size=0.2, random_state=42)
dtrain = xgb.DMatrix(Xtrain, label=ytrain)

model = xgb.train(xgb_params, dtrain, num_boost_round=60, \
                  early_stopping_rounds=50, maximize=False, verbose_eval=10)

fig, ax = plt.subplots(1,1,figsize=(10,10))
xgb.plot_importance(model, max_num_features=5, ax=ax)

I want to now see the feature importance using the xgboost.plot_importance()function, but the resulting plot doesn't show the feature names. Instead, the features are listed as f1, f2, f3, etc. as shown below.

我现在想使用该xgboost.plot_importance()函数查看特征重要性,但生成的图未显示特征名称。但是,这些功能被列为f1f2f3等如下所示。

enter image description here

在此处输入图片说明

I think the problem is that I converted my original Pandas data frame into a DMatrix. How can I associate feature names properly so that the feature importance plot shows them?

我认为问题在于我将原始 Pandas 数据框转换为 DMatrix。如何正确关联特征名称以便特征重要性图显示它们?

采纳答案by piRSquared

You want to use the feature_namesparameter when creating your xgb.DMatrix

您想feature_names在创建时使用该参数xgb.DMatrix

dtrain = xgb.DMatrix(Xtrain, label=ytrain, feature_names=feature_names)

回答by Darrrrrren

If you're using the scikit-learn wrapper you'll need to access the underlying XGBoost Booster and set the feature names on it, instead of the scikit model, like so:

如果您使用 scikit-learn 包装器,则需要访问底层 XGBoost Booster 并在其上设置功能名称,而不是 scikit 模型,如下所示:

model = joblib.load("your_saved.model")
model.get_booster().feature_names = ["your", "feature", "name", "list"]
xgboost.plot_importance(model.get_booster())

回答by Vivek Kumar

train_test_splitwill convert the dataframe to numpy array which dont have columns information anymore.

train_test_split将数据帧转换为不再有列信息的 numpy 数组。

Either you can do what @piRSquared suggested and pass the features as a parameter to DMatrix constructor. Or else, you can convert the numpy array returned from the train_test_splitto a Dataframe and then use your code.

您可以按照@piRSquared 的建议进行操作,并将这些功能作为参数传递给 DMatrix 构造函数。或者,您可以将从 返回的 numpy 数组转换train_test_split为 Dataframe,然后使用您的代码。

Xtrain, Xval, ytrain, yval = train_test_split(df[feature_names], y, \
                                    test_size=0.2, random_state=42)

# See below two lines
X_train = pd.DataFrame(data=Xtrain, columns=feature_names)
Xval = pd.DataFrame(data=Xval, columns=feature_names)

dtrain = xgb.DMatrix(Xtrain, label=ytrain)

回答by Vincent M.K

With Scikit-Learn Wrapper interface "XGBClassifier",plot_importance reuturns class "matplotlib Axes". So we can employ axes.set_yticklabels.

使用 Scikit-Learn Wrapper 接口“XGBClassifier”,plot_importance 返回类“matplotlib Axes”。所以我们可以使用axes.set_yticklabels。

plot_importance(model).set_yticklabels(['feature1','feature2'])

plot_importance(model).set_yticklabels(['feature1','feature2'])

回答by Peter VanderMeer

An alternate way I found whiles playing around with feature_names. While playing around with it, I wrote this which works on XGBoost v0.80 which I'm currently running.

我在玩feature_names. 在玩弄它时,我写了这个,它适用于我目前正在运行的 XGBoost v0.80。

## Saving the model to disk
model.save_model('foo.model')
with open('foo_fnames.txt', 'w') as f:
    f.write('\n'.join(model.feature_names))

## Later, when you want to retrieve the model...
model2 = xgb.Booster({"nthread": nThreads})
model2.load_model("foo.model")

with open("foo_fnames.txt", "r") as f:
    feature_names2 = f.read().split("\n")

model2.feature_names = feature_names2
model2.feature_types = None
fig, ax = plt.subplots(1,1,figsize=(10,10))
xgb.plot_importance(model2, max_num_features = 5, ax=ax)

So this is saving feature_namesseparately and adding it back in later. For some reason feature_typesalso needs to be initialized, even if the value is None.

所以这是feature_names单独保存并稍后添加回来。出于某种原因feature_types也需要初始化,即使值是None.

回答by Badger Titan

If trained with

如果训练有

model = XGBClassifier(
    max_depth = 8, 
    learning_rate = 0.25, 
    n_estimators = 50, 
    objective = "binary:logistic",
    n_jobs = 4
)

# x, y are pandas DataFrame
model.fit(train_data_x, train_data_y)

you can do model.get_booster().get_fscore()to get feature names and feature importance as a python dict

您可以model.get_booster().get_fscore()将特征名称和特征重要性作为python dict

回答by Gianmario Spacagna

You should specify the feature_names when instantiating the XGBoost Classifier:

您应该在实例化 XGBoost 分类器时指定 feature_names:

xgb = xgb.XGBClassifier(feature_names=feature_names)

Be careful that if you wrap the xgb classifier in a sklearn pipeline that performs any selection on the columns (e.g. VarianceThreshold) the xgb classifier will fail when trying to fit or transform.

请注意,如果您将 xgb 分类器包装在对列执行任何选择(例如 VarianceThreshold)的 sklearn 管道中,则 xgb 分类器在尝试拟合或转换时将失败。