database 数据库和数据仓库有什么区别?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/3419353/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
What is the difference between a database and a data warehouse?
提问by Data Man
What is the difference between a database and a data warehouse?
数据库和数据仓库有什么区别?
Aren't they the same thing, or at least written in the same thing (ie. Oracle RDBMS)?
它们不是同一件事,或者至少不是用同一件事编写的(即 Oracle RDBMS)?
回答by TheCloudlessSky
Check out thisfor more information.
查看此了解更多信息。
From a previous link:
从以前的链接:
Database
数据库
- Used for Online Transactional Processing (OLTP) but can be used for other purposes such as Data Warehousing. This records the data from the user for history.
- The tables and joins are complex since they are normalized (for RDMS). This is done to reduce redundant data and to save storage space.
- Entity – Relational modeling techniques are used for RDMS database design.
- Optimized for write operation.
- Performance is low for analysis queries.
- 用于在线事务处理 ( OLTP),但也可用于其他目的,例如数据仓库。这会记录用户的历史数据。
- 表和连接很复杂,因为它们是标准化的(对于RDMS)。这样做是为了减少冗余数据并节省存储空间。
- 实体——关系建模技术用于 RDMS 数据库设计。
- 针对写操作进行了优化。
- 分析查询的性能较低。
Data Warehouse
数据仓库
- Used for Online Analytical Processing (OLAP). This reads the historical data for the Users for business decisions.
- The Tables and joins are simple since they are de-normalized. This is done to reduce the response time for analytical queries.
- Data – Modeling techniques are used for the Data Warehouse design.
- Optimized for read operations.
- High performance for analytical queries.
- Is usuallya Database.
- 用于在线分析处理 ( OLAP)。这会读取用户的历史数据以进行业务决策。
- 表和连接很简单,因为它们是非规范化的。这样做是为了减少分析查询的响应时间。
- 数据——建模技术用于数据仓库设计。
- 针对读取操作进行了优化。
- 分析查询的高性能。
- 是通常的数据库。
It's important to note as well that Data Warehouses could be sourced from zero to many databases.
还需要注意的是,数据仓库可以来自零到多个数据库。
回答by Markus
From a Non-Technical View: A database is constrained to a particular applications or set of applications.
从非技术角度来看:数据库仅限于特定应用程序或应用程序集。
A data warehouse is an enterprise level data repository. It's going to contain data from all/many segments of the business. It's going to share this information to provide a global picture of the business. It is also critical to integration between the different segments of the business.
数据仓库是企业级数据存储库。它将包含来自所有/许多业务部门的数据。它将共享此信息以提供业务的全球图景。这对于不同业务部门之间的整合也很重要。
From a Technical view: The word "Data Warehouse" has been given no recognized definition. Personally, I define a data warehouse as a collection of data-marts. Where each data-mart consists of one or more databases where the database is specific to a specific problem set (application, data-set or process).
从技术角度来看:“数据仓库”这个词没有得到公认的定义。就个人而言,我将数据仓库定义为数据集市的集合。每个数据集市由一个或多个数据库组成,其中数据库特定于特定问题集(应用程序、数据集或过程)。
Simply put a database is a component of a data-warehouse. There are many places to explore this concept, but because there is no "definition", you will find challenges with any answer you give.
简单地说,数据库是数据仓库的一个组件。有很多地方可以探索这个概念,但因为没有“定义”,你给出的任何答案都会遇到挑战。
回答by dave
A data warehouse is a TYPE of database.
数据仓库是一种数据库类型。
In addition to what folks have already said, data warehouses tend to be OLAP, with indexes, etc. tuned for reading, not writing, and the data is de-normalized / transformed into forms that are easier to read & analyze.
除了人们已经说过的之外,数据仓库往往是 OLAP,索引等针对读取而不是写入进行了调整,并且数据被非规范化/转换为更易于阅读和分析的形式。
Some folks have said "databases" are the same as OLTP -- this isn't true. OLTP, again, is a TYPE of database.
有些人说“数据库”与 OLTP 相同——这不是真的。OLTP 同样是一种数据库类型。
Other types of "databases": Text files, XML, Excel, CSV..., Flat Files :-)
其他类型的“数据库”:文本文件、XML、Excel、CSV...、平面文件 :-)
回答by kniemczak
The simplest way to explain it would be to say that a data warehouse consists of more than just a database. A database is an collection of data organized in some way, but a data warehouse is organized specifically to "facilitate reporting and analysis". This however is not the entire story as data warehousing also contains "the means to retrieve and analyze data, to extract, transform and load data, and to manage the data dictionary are also considered essential components of a data warehousing system".
解释它的最简单方法是说数据仓库不仅仅包含一个数据库。数据库是以某种方式组织的数据的集合,但数据仓库的组织是专门为“促进报告和分析”而组织的。然而,这并不是全部,因为数据仓库还包含“检索和分析数据、提取、转换和加载数据以及管理数据字典的方法也被认为是数据仓库系统的基本组成部分”。
回答by ramya ankishetty
DataBase:- OLTP(online transaction process)
数据库:- OLTP(在线交易流程)
- It is current data, up-to-date detailed data, flat relational isolated data.
- Entity relationship is used to design the database
- DB size 100MB-GB simple transaction or quires
- 它是当前数据、最新详细数据、平面关系孤立数据。
- 实体关系用于设计数据库
- 数据库大小 100MB-GB 简单事务或查询
Datawarehouse
数据仓库
- OLAP(Online Analytical process)
- It is about Historical data Star schema,snow flexed schema and galaxy
- schema is used to design the data warehouse
- DB size 100GB-TB Improved query performance foundation for DATA MINING DATA VISUALIZATION
- Enables users to gain a deeper understanding and knowledge about various aspects of their corporate data through fast, consistent, interactive access to a wide variety of possible views of the data
- OLAP(在线分析过程)
- 它是关于历史数据 Star 模式、snow flexed 模式和星系
- 模式用于设计数据仓库
- 数据库大小 100GB-TB 改进了数据挖掘数据可视化的查询性能基础
- 通过快速、一致、交互式访问各种可能的数据视图,使用户能够更深入地了解和了解公司数据的各个方面
回答by LarryH
Data Warehouse vs Database:A data warehouse is specially designed for data analytics, which involves reading large amounts of data to understand relationships and trends across the data. A database is used to capture and store data, such as recording details of a transaction.
数据仓库与数据库:数据仓库专为数据分析而设计,涉及读取大量数据以了解数据之间的关系和趋势。数据库用于捕获和存储数据,例如记录交易的详细信息。
Data Warehouse: Suitable workloads- Analytics, reporting, big data. Data source- Data collected and normalized from many sources. Data capture- Bulk write operations typically on a predetermined batch schedule. Data normalization- Denormalized schemas, such as the Star schema or Snowflake schema. Data storage- Optimized for simplicity of access and high-speed query. performance using columnar storage. Data access- Optimized to minimize I/O and maximize data throughput.
数据仓库:合适的工作负载- 分析、报告、大数据。 数据源- 从许多来源收集和规范化的数据。 数据捕获- 通常按照预定的批处理计划进行批量写入操作。 数据规范化- 非规范化模式,例如星型模式或雪花模式。 数据存储- 针对访问和高速查询的简单性进行了优化。使用列式存储的性能。 数据访问- 优化以最小化 I/O 并最大化数据吞吐量。
Transactional Database: Suitable workloads- Transaction processing. Data source- Data captured as-is from a single source, such as a transactional system. Data capture- Optimized for continuous write operations as new data is available to maximize transaction throughput. Data normalization- Highly normalized, static schemas. Data storage- Optimized for high throughout write operations to a single row-oriented physical block. Data access- High volumes of small read operations.
事务数据库:合适的工作负载- 事务处理。 数据源- 从单一来源(例如事务系统)按原样捕获的数据。 数据捕获- 优化连续写入操作,因为新数据可用以最大化事务吞吐量。 数据规范化- 高度规范化的静态模式。 数据存储- 针对单个面向行的物理块的高吞吐量写入操作进行了优化。 数据访问- 大量小型读取操作。
回答by Abderrahmen
Database:
数据库:
Used for Online Transactional Processing (OLTP).
用于在线事务处理 (OLTP)。
- Transaction-oriented.
- Application oriented.
- Current data.
- Detailed data.
- Scalable data.
- Many Users, Administrators / Operational.
- Execution time: short.
- 交易导向。
- 面向应用。
- 当前数据。
- 详细数据。
- 可扩展的数据。
- 许多用户、管理员/操作员。
- 执行时间:短。
Data Warehouse:
数据仓库:
Used for Online Analytical Processing (OLAP).
用于在线分析处理 (OLAP)。
- Oriented analysis.
- Subject oriented.
- Historical data.
- Aggregated data.
- Static data.
- Not many users, manager.
- Execution time: long.
- 定向分析。
- 面向对象。
- 历史数据。
- 汇总数据。
- 静态数据。
- 用户不多,管理员。
- 执行时间:长。
回答by Charith Perera
A Data Warehousing (DW) is process for collecting and managing data from varied sources to provide meaningful business insights. A Data warehouse is typically used to connect and analyze business data from heterogeneous sources. The data warehouse is the core of the BI system which is built for data analysis and reporting.
数据仓库 (DW) 是从不同来源收集和管理数据以提供有意义的业务洞察力的过程。数据仓库通常用于连接和分析来自异构源的业务数据。数据仓库是BI系统的核心,是为数据分析和报告而构建的。
回答by Rama krishna
Any data storage for application generally uses the database. It could be relational database or no sql databases which are currently trending.
任何应用程序的数据存储一般都使用数据库。它可能是关系数据库或没有当前趋势的 sql 数据库。
Data warehouse is also database. We can call data warehouse database as specialized data storage for the analytical reporting purposes for the company. This data used for key business decision.
数据仓库也是数据库。我们可以将数据仓库数据库称为专门用于公司分析报告目的的数据存储。此数据用于关键业务决策。
The organized data helps is reporting and taking business decision effectively.
有组织的数据有助于有效地报告和做出业务决策。
回答by dgcharitha
Source for the Data warehouse can be cluster of Databases, because databases are used for Online Transaction process like keeping the current records..but in Data warehouse it stores historical data which are for Online analytical process.
数据仓库的来源可以是数据库集群,因为数据库用于在线交易过程,例如保存当前记录……但在数据仓库中,它存储用于在线分析过程的历史数据。