Pandas:对不同的列应用不同的函数

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/26434123/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 22:35:24  来源:igfitidea点击:

Pandas: apply different functions to different columns

pythonpandasaggregate

提问by pbreach

When using df.mean()I get a result where the mean for each column is given. Now let's say I want the mean of the first column, and the sum of the second. Is there a way to do this? I don't want to have to disassemble and reassemble the DataFrame.

使用时,df.mean()我得到一个结果,其中给出了每列的平均值。现在假设我想要第一列的平均值和第二列的总和。有没有办法做到这一点?我不想拆卸和重新组装DataFrame.

My initial idea was to do something along the lines of pandas.groupby.agg()like so:

我最初的想法是做一些pandas.groupby.agg()类似这样的事情:

df = pd.DataFrame(np.random.random((10,2)), columns=['A','B'])
df.apply({'A':np.mean, 'B':np.sum}, axis=0)

Traceback (most recent call last):

  File "<ipython-input-81-265d3e797682>", line 1, in <module>
    df.apply({'A':np.mean, 'B':np.sum}, axis=0)

  File "C:\Users\Patrick\Anaconda\lib\site-packages\pandas\core\frame.py", line 3471, in apply
    return self._apply_standard(f, axis, reduce=reduce)

  File "C:\Users\Patrick\Anaconda\lib\site-packages\pandas\core\frame.py", line 3560, in _apply_standard
    results[i] = func(v)

TypeError: ("'dict' object is not callable", u'occurred at index A')

But clearly this doesn't work. It seems like passing a dict would be an intuitive way of doing this, but is there another way (again without disassembling and reassembling the DataFrame)?

但显然这行不通。似乎传递 dict 将是一种直观的方式来做到这一点,但还有另一种方式(同样无需拆卸和重新组装DataFrame)?

采纳答案by rocarvaj

I think you can use the aggmethod with a dictionary as the argument. For example:

我认为您可以使用agg带有字典作为参数的方法。例如:

df = pd.DataFrame({'A': [0, 1, 2], 'B': [3, 4, 5]})

df =
A   B
0   0   3
1   1   4
2   2   5

df.agg({'A': 'mean', 'B': sum})

A     1.0
B    12.0
dtype: float64

回答by Bill Letson

You can try a closure:

您可以尝试关闭:

def multi_func(functions):
    def f(col):
        return functions[col.name](col)
    return f

df = pd.DataFrame(np.random.random((10, 2)), columns=['A', 'B'])
result = df.apply(multi_func({'A': np.mean, 'B': np.sum}))

回答by Pedro M Duarte

Just faced this situation myself and came up with the following:

刚刚自己面对这种情况,并提出以下几点:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame([['one', 'two'], ['three', 'four'], ['five', 'six']], 
   ...:                   columns=['A', 'B'])

In [3]: df
Out[3]: 
       A     B
0    one   two
1  three  four
2   five   six

In [4]: converters = {'A': lambda x: x[:1], 'B': lambda x: x.replace('o', '')}

In [5]: new = pd.DataFrame.from_dict({col: series.apply(converters[col]) 
   ...:                               if col in converters else series
   ...:                               for col, series in df.iteritems()})

In [6]: new
Out[6]: 
   A    B
0  o   tw
1  t  fur
2  f  six