Unmelt Pandas DataFrame

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/31306741/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:35:59  来源:igfitidea点击:

Unmelt Pandas DataFrame

pythonpandas

提问by slaw

I have a pandas dataframe with two id variables:

我有一个带有两个 id 变量的 Pandas 数据框:

df = pd.DataFrame({'id': [1,1,1,2,2,3], 
               'num': [10,10,12,13,14,15],
               'q': ['a', 'b', 'd', 'a', 'b', 'z'],
               'v': [2,4,6,8,10,12]})

   id  num  q   v
0   1   10  a   2
1   1   10  b   4
2   1   12  d   6
3   2   13  a   8
4   2   14  b  10
5   3   15  z  12

I can pivot the table with:

我可以使用以下方法旋转表格:

df.pivot('id','q','v')

And end up with something close:

最后得到一些接近的东西:

q    a   b   d   z
id                
1    2   4   6 NaN
2    8  10 NaN NaN
3  NaN NaN NaN  12

However, what I really want is (the original unmelted form):

但是,我真正想要的是(原始未熔化形式):

id   num   a   b   d   z               
1    10   2   4 NaN NaN
1    12 NaN NaN   6 NaN  
2    13   8 NaN NaN NaN
2    14 NaN  10 NaN NaN
3    15 NaN NaN NaN  12

In other words:

换句话说:

  1. 'id' and 'num' my indices (normally, I've only seen either 'id' or 'num' being the index but I need both since I'm trying to retrieve the original unmelted form)
  2. 'q' are my columns
  3. 'v' are my values in the table
  1. 'id' 和 'num' 我的索引(通常,我只看到 'id' 或 'num' 作为索引,但我需要两者,因为我试图检索原始未熔化的形式)
  2. 'q' 是我的列
  3. 'v' 是我在表中的值

Update

更新

I found a closesolution from Wes McKinney's blog:

我从Wes McKinney 的博客中找到了一个接近的解决方案:

df.pivot_table(index=['id','num'], columns='q')

         v            
q        a   b   d   z
id num                
1  10    2   4 NaN NaN
   12  NaN NaN   6 NaN
2  13    8 NaN NaN NaN
   14  NaN  10 NaN NaN
3  15  NaN NaN NaN  12

However, the format is not quite the same as what I want above.

但是,格式与我上面想要的不太一样。

采纳答案by khammel

You're really close slaw. Just rename your column index to None and you've got what you want.

你真的很亲密。只需将您的列索引重命名为 None 即可获得所需的内容。

df2 = df.pivot_table(index=['id','num'], columns='q')
df2.columns = df2.columns.droplevel().rename(None)
df2.reset_index().fillna("null").to_csv("test.csv", sep="\t", index=None)

Notethat the the 'v' column is expected to be numeric by default so that it can be aggregated. Otherwise, Pandas will error out with:

请注意,默认情况下“v”列应为数字,以便可以对其进行聚合。否则,Pandas 会出错:

DataError: No numeric types to aggregate

To resolve this, you can specify your own aggregation function by using a custom lambda function:

要解决此问题,您可以使用自定义 lambda 函数指定自己的聚合函数:

df2 = df.pivot_table(index=['id','num'], columns='q', aggfunc= lambda x: x)

回答by Zero

You could use set_indexand unstack

你可以使用set_indexunstack

In [18]: df.set_index(['id', 'num', 'q'])['v'].unstack().reset_index()
Out[18]:
q  id  num    a     b    d     z
0   1   10  2.0   4.0  NaN   NaN
1   1   12  NaN   NaN  6.0   NaN
2   2   13  8.0   NaN  NaN   NaN
3   2   14  NaN  10.0  NaN   NaN
4   3   15  NaN   NaN  NaN  12.0

回答by johnInHome

you can remove name q.

您可以删除名称 q。

df1.columns=df1.columns.tolist()

Zero's answer + remove q =

零的答案 + 删除 q =

df1 = df.set_index(['id', 'num', 'q'])['v'].unstack().reset_index()
df1.columns=df1.columns.tolist()

   id  num    a     b    d     z
0   1   10  2.0   4.0  NaN   NaN
1   1   12  NaN   NaN  6.0   NaN
2   2   13  8.0   NaN  NaN   NaN
3   2   14  NaN  10.0  NaN   NaN
4   3   15  NaN   NaN  NaN  12.0

回答by Hillary Murefu

This might work just fine:

这可能工作得很好:

  1. Pivot

df2 = (df.pivot_table(index=['id', 'num'], columns='q', values='v')).reset_index())

df2 = (df.pivot_table(index=['id', 'num'], columns='q', values='v')).reset_index())

  1. Concatinate the 1st level column names with the 2nd
  1. 将第一级列名与第二级列名连接起来

df2.columns =[s1 + str(s2) for (s1,s2) in df2.columns.tolist()]

df2.columns =[s1 + str(s2) for (s1,s2) in df2.columns.tolist()]

回答by slaw

Came up with a close solution

提出了一个紧密的解决方案

df2 = df.pivot_table(index=['id','num'], columns='q')
df2.columns = df2.columns.droplevel()
df2.reset_index().fillna("null").to_csv("test.csv", sep="\t", index=None)

Still can't figure out how to drop 'q' from the dataframe

仍然无法弄清楚如何从数据框中删除“q”

回答by Quant Christo

It can be done in three steps:

可以分三步完成:

#1: Prepare auxilary column 'id_num': 
df['id_num'] = df[['id', 'num']].apply(tuple, axis=1)
df = df.drop(columns=['id', 'num'])

#2: 'pivot' is almost an inverse of melt:
df, df.columns.name = df.pivot(index='id_num', columns='q', values='v').reset_index(), ''

#3: Bring back 'id' and 'num' columns:
df['id'], df['num'] = zip(*df['id_num'])
df = df.drop(columns=['id_num'])

This is a result, but with different order of columns:

这是一个结果,但列的顺序不同:

     a     b    d     z  id  num
0  2.0   4.0  NaN   NaN   1   10
1  NaN   NaN  6.0   NaN   1   12
2  8.0   NaN  NaN   NaN   2   13
3  NaN  10.0  NaN   NaN   2   14
4  NaN   NaN  NaN  12.0   3   15

Alternatively with proper order:

或者以适当的顺序:

def multiindex_pivot(df, columns=None, values=None):
    #inspired by: https://github.com/pandas-dev/pandas/issues/23955
    names = list(df.index.names)
    df = df.reset_index()
    list_index = df[names].values
    tuples_index = [tuple(i) for i in list_index] # hashable
    df = df.assign(tuples_index=tuples_index)
    df = df.pivot(index="tuples_index", columns=columns, values=values)
    tuples_index = df.index  # reduced
    index = pd.MultiIndex.from_tuples(tuples_index, names=names)
    df.index = index
    df = df.reset_index() #me
    df.columns.name = ''  #me
    return df

df = df.set_index(['id', 'num'])
df = multiindex_pivot(df, columns='q', values='v')