C 和 C++ 中的静态变量存储在哪里?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/93039/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Where are static variables stored in C and C++?
提问by Benoit
In what segment (.BSS, .DATA, other) of an executable file are static variables stored so that they don't have name collision? For example:
静态变量存储在可执行文件的哪个段(.BSS、.DATA、其他)中,以便它们没有名称冲突?例如:
foo.c: bar.c:
static int foo = 1; static int foo = 10;
void fooTest() { void barTest() {
static int bar = 2; static int bar = 20;
foo++; foo++;
bar++; bar++;
printf("%d,%d", foo, bar); printf("%d, %d", foo, bar);
} }
If I compile both files and link it to a main that calls fooTest() and barTest repeatedly, the printf statements increment independently. Makes sense since the foo and bar variables are local to the translation unit.
如果我编译这两个文件并将其链接到重复调用 fooTest() 和 barTest 的 main,则 printf 语句会独立递增。有道理,因为 foo 和 bar 变量是翻译单元的本地变量。
But where is the storage allocated?
但是存储分配在哪里?
To be clear, the assumption is that you have a toolchain that would output a file in ELF format. Thus, I believethat there hasto be some space reserved in the executable file for those static variables.
For discussion purposes, lets assume we use the GCC toolchain.
需要明确的是,假设您有一个可以输出 ELF 格式文件的工具链。因此,我相信,有有将一些空间,对于那些静态变量的可执行文件保留。
出于讨论目的,假设我们使用 GCC 工具链。
采纳答案by Don Neufeld
Where your statics go depends on whether they are zero-initialized. zero-initializedstatic data goes in .BSS (Block Started by Symbol), non-zero-initializeddata goes in .DATA
你的静态去哪里取决于它们是否是零初始化的。零初始化静态数据进入.BSS (Block Started by Symbol),非零初始化数据进入.DATA
回答by karn
When a program is loaded into memory, it's organized into different segments. One of the segment is DATA segment. The Data segment is further sub-divided into two parts:
Initialized data segment: All the global, static and constant data are stored here.
Uninitialized data segment(BSS): All the uninitialized data are stored in this segment.
当一个程序被加载到内存中时,它被组织成不同的段。其中一个段是DATA 段。数据段进一步细分为两部分:
初始化数据段:所有全局、静态和常量数据都存储在这里。
未初始化数据段(BSS):所有未初始化的数据都存储在该段中。
Here is a diagram to explain this concept:
这是一个解释这个概念的图表:
here is very good link explaining these concepts:
这是解释这些概念的非常好的链接:
回答by yogeesh
In fact, a variable is tuple (storage, scope, type, address, value):
实际上,变量是元组(存储、作用域、类型、地址、值):
storage : where is it stored, for example data, stack, heap...
scope : who can see us, for example global, local...
type : what is our type, for example int, int*...
address : where are we located
value : what is our value
Local scope could mean local to either the translational unit (source file), the function or the block depending on where its defined. To make variable visible to more than one function, it definitely has to be in either DATA or the BSS area (depending on whether its initialized explicitly or not, respectively). Its then scoped accordingly to either all function(s) or function(s) within source file.
局部作用域可能意味着翻译单元(源文件)、函数或块的局部,具体取决于其定义的位置。为了使变量对多个函数可见,它肯定必须在 DATA 或 BSS 区域中(分别取决于它是否显式初始化)。然后将其范围相应地限定为源文件中的所有函数或函数。
回答by Seb Rose
The storage location of the data will be implementation dependent.
数据的存储位置将取决于实现。
However, the meaning of staticis "internal linkage". Thus, the symbol is internalto the compilation unit (foo.c, bar.c) and cannot be referenced outside that compilation unit. So, there can be no name collisions.
但是,静态的含义是“内部链接”。因此,符号在编译单元 (foo.c, bar.c)内部,不能在该编译单元外部引用。因此,不会有名称冲突。
回答by paxdiablo
I don't believe there will be a collision. Using static at the file level (outside functions) marks the variable as local to the current compilation unit (file). It's never visible outside the current file so never has to have a name that can be used externally.
我不相信会发生碰撞。在文件级别(外部函数)使用 static 将变量标记为当前编译单元(文件)的本地变量。它永远不会在当前文件之外可见,因此永远不必具有可以在外部使用的名称。
Using static insidea function is different - the variable is only visible to the function (whether static or not), it's just its value is preserved across calls to that function.
在函数内使用 static是不同的 - 变量仅对函数可见(无论是否为静态),它只是在调用该函数时保留其值。
In effect, static does two different things depending on where it is. In bothcases however, the variable visibility is limited in such a way that you can easily prevent namespace clashes when linking.
实际上,静态根据它所在的位置做了两种不同的事情。但是,在这两种情况下,变量可见性都受到限制,因此您可以在链接时轻松防止命名空间冲突。
Having said that, I believe it would be stored in the DATA
section, which tends to have variables that are initialized to values other than zero. This is, of course, an implementation detail, not something mandated by the standard - it only cares about behaviour,not how things are done under the covers.
话虽如此,我相信它将存储在该DATA
部分中,该部分往往具有初始化为非零值的变量。当然,这是一个实现细节,不是标准强制要求的——它只关心行为,而不关心事情是如何在幕后完成的。
回答by ugasoft
in the "global and static" area :)
在“全局和静态”区域:)
There are several memory areas in C++:
C++中有几个内存区域:
- heap
- free store
- stack
- global & static
- const
- 堆
- 免费商店
- 堆
- 全局和静态
- 常量
See herefor a detailed answer to your question:
请参阅此处详细回答您的问题:
The following summarizes a C++ program's major distinct memory areas. Note that some of the names (e.g., "heap") do not appear as such in the draft [standard].
下面总结了 C++ 程序的主要不同内存区域。请注意,某些名称(例如,“堆”)在草案 [标准] 中并未出现。
Memory Area Characteristics and Object Lifetimes
-------------- ------------------------------------------------
Const Data The const data area stores string literals and
other data whose values are known at compile
time. No objects of class type can exist in
this area. All data in this area is available
during the entire lifetime of the program.
Further, all of this data is read-only, and the
results of trying to modify it are undefined.
This is in part because even the underlying
storage format is subject to arbitrary
optimization by the implementation. For
example, a particular compiler may store string
literals in overlapping objects if it wants to.
Stack The stack stores automatic variables. Typically
allocation is much faster than for dynamic
storage (heap or free store) because a memory
allocation involves only pointer increment
rather than more complex management. Objects
are constructed immediately after memory is
allocated and destroyed immediately before
memory is deallocated, so there is no
opportunity for programmers to directly
manipulate allocated but uninitialized stack
space (barring willful tampering using explicit
dtors and placement new).
Free Store The free store is one of the two dynamic memory
areas, allocated/freed by new/delete. Object
lifetime can be less than the time the storage
is allocated; that is, free store objects can
have memory allocated without being immediately
initialized, and can be destroyed without the
memory being immediately deallocated. During
the period when the storage is allocated but
outside the object's lifetime, the storage may
be accessed and manipulated through a void* but
none of the proto-object's nonstatic members or
member functions may be accessed, have their
addresses taken, or be otherwise manipulated.
Heap The heap is the other dynamic memory area,
allocated/freed by malloc/free and their
variants. Note that while the default global
new and delete might be implemented in terms of
malloc and free by a particular compiler, the
heap is not the same as free store and memory
allocated in one area cannot be safely
deallocated in the other. Memory allocated from
the heap can be used for objects of class type
by placement-new construction and explicit
destruction. If so used, the notes about free
store object lifetime apply similarly here.
Global/Static Global or static variables and objects have
their storage allocated at program startup, but
may not be initialized until after the program
has begun executing. For instance, a static
variable in a function is initialized only the
first time program execution passes through its
definition. The order of initialization of
global variables across translation units is not
defined, and special care is needed to manage
dependencies between global objects (including
class statics). As always, uninitialized proto-
objects' storage may be accessed and manipulated
through a void* but no nonstatic members or
member functions may be used or referenced
outside the object's actual lifetime.
回答by trotterdylan
It depends on the platform and compiler that you're using. Some compilers store directly in the code segment. Static variables are always only accessible to the current translation unit and the names are not exported thus the reason name collisions never occur.
这取决于您使用的平台和编译器。一些编译器直接存储在代码段中。静态变量始终只能由当前翻译单元访问,并且名称不会导出,因此永远不会发生名称冲突的原因。
回答by itj
Data declared in a compilation unit will go into the .BSS or the .Data of that files output. Initialised data in BSS, uninitalised in DATA.
在编译单元中声明的数据将进入该文件输出的 .BSS 或 .Data。在 BSS 中初始化数据,在 DATA 中未初始化。
The difference between static and global data comes in the inclusion of symbol information in the file. Compilers tend to include the symbol information but only mark the global information as such.
静态数据和全局数据之间的区别在于文件中包含符号信息。编译器倾向于包含符号信息,但只标记全局信息。
The linker respects this information. The symbol information for the static variables is either discarded or mangled so that static variables can still be referenced in some way (with debug or symbol options). In neither case can the compilation units gets affected as the linker resolves local references first.
链接器尊重这些信息。静态变量的符号信息要么被丢弃要么被破坏,这样静态变量仍然可以以某种方式被引用(使用调试或符号选项)。在这两种情况下,编译单元都不会受到影响,因为链接器首先解析本地引用。
回答by Dan
I tried it with objdump and gdb, here is the result what I get:
我用 objdump 和 gdb 尝试过,这是我得到的结果:
(gdb) disas fooTest
Dump of assembler code for function fooTest:
0x000000000040052d <+0>: push %rbp
0x000000000040052e <+1>: mov %rsp,%rbp
0x0000000000400531 <+4>: mov 0x200b09(%rip),%eax # 0x601040 <foo>
0x0000000000400537 <+10>: add Disassembly of section .data:
0000000000601030 <__data_start>:
...
0000000000601038 <__dso_handle>:
...
0000000000601040 <foo>:
601040: 01 00 add %eax,(%rax)
...
0000000000601044 <bar.2180>:
601044: 02 00 add (%rax),%al
...
0000000000601048 <foo>:
601048: 0a 00 or (%rax),%al
...
000000000060104c <bar.2180>:
60104c: 14 00 adc ##代码##x0,%al
x1,%eax
0x000000000040053a <+13>: mov %eax,0x200b00(%rip) # 0x601040 <foo>
0x0000000000400540 <+19>: mov 0x200afe(%rip),%eax # 0x601044 <bar.2180>
0x0000000000400546 <+25>: add ##代码##x1,%eax
0x0000000000400549 <+28>: mov %eax,0x200af5(%rip) # 0x601044 <bar.2180>
0x000000000040054f <+34>: mov 0x200aef(%rip),%edx # 0x601044 <bar.2180>
0x0000000000400555 <+40>: mov 0x200ae5(%rip),%eax # 0x601040 <foo>
0x000000000040055b <+46>: mov %eax,%esi
0x000000000040055d <+48>: mov ##代码##x400654,%edi
0x0000000000400562 <+53>: mov ##代码##x0,%eax
0x0000000000400567 <+58>: callq 0x400410 <printf@plt>
0x000000000040056c <+63>: pop %rbp
0x000000000040056d <+64>: retq
End of assembler dump.
(gdb) disas barTest
Dump of assembler code for function barTest:
0x000000000040056e <+0>: push %rbp
0x000000000040056f <+1>: mov %rsp,%rbp
0x0000000000400572 <+4>: mov 0x200ad0(%rip),%eax # 0x601048 <foo>
0x0000000000400578 <+10>: add ##代码##x1,%eax
0x000000000040057b <+13>: mov %eax,0x200ac7(%rip) # 0x601048 <foo>
0x0000000000400581 <+19>: mov 0x200ac5(%rip),%eax # 0x60104c <bar.2180>
0x0000000000400587 <+25>: add ##代码##x1,%eax
0x000000000040058a <+28>: mov %eax,0x200abc(%rip) # 0x60104c <bar.2180>
0x0000000000400590 <+34>: mov 0x200ab6(%rip),%edx # 0x60104c <bar.2180>
0x0000000000400596 <+40>: mov 0x200aac(%rip),%eax # 0x601048 <foo>
0x000000000040059c <+46>: mov %eax,%esi
0x000000000040059e <+48>: mov ##代码##x40065c,%edi
0x00000000004005a3 <+53>: mov ##代码##x0,%eax
0x00000000004005a8 <+58>: callq 0x400410 <printf@plt>
0x00000000004005ad <+63>: pop %rbp
0x00000000004005ae <+64>: retq
End of assembler dump.
here is the objdump result
这是 objdump 结果
##代码##So, that's to say, your four variables are located in data section event the the same name, but with different offset.
所以,也就是说,您的四个变量位于数据段事件中,名称相同,但偏移量不同。