Python 总结 Pandas DataFrame 中的列值

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/20181456/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 19:47:27  来源:igfitidea点击:

Sum up column values in Pandas DataFrame

pythonpython-2.7pandas

提问by Nyxynyx

In a pandas DataFrame, is it possible to collapse columns which have identical values, and sum up the values in another column?

在 Pandas DataFrame 中,是否可以折叠具有相同值的列,并对另一列中的值求和?

Code

代码

data = {"score":{"0":9.397,"1":9.397,"2":9.397995,"3":9.397996,"4":9.3999},"type":{"0":"advanced","1":"advanced","2":"advanced","3":"newbie","4":"expert"},"count":{"0":394.18930604,"1":143.14226729,"2":9.64172783,"3":0.1,"4":19.65413734}}
df = pd.DataFrame(data)
df

Output

输出

     count       score       type
0    394.189306  9.397000    advanced
1    143.142267  9.397000    advanced
2    9.641728    9.397995    advanced
3    0.100000    9.397996    newbie
4    19.654137   9.399900    expert

In the example above, the first two rows have the same scoreand type, so these rows should be merged together and their scores added up.

在上面的示例中,前两行具有相同的scoretype,因此应将这些行合并在一起并将它们的分数相加。

Desired Output

期望输出

     count       score       type
0    537.331573  9.397000    advanced
1    9.641728    9.397995    advanced
2    0.100000    9.397996    newbie
3    19.654137   9.399900    expert

采纳答案by DSM

This is a job for groupby:

这是一份工作groupby

>>> df.groupby(["score", "type"]).sum()
                        count
score    type                
9.397000 advanced  537.331573
9.397995 advanced    9.641728
9.397996 newbie      0.100000
9.399900 expert     19.6541374
>>> df.groupby(["score", "type"], as_index=False).sum()
      score      type       count
0  9.397000  advanced  537.331573
1  9.397995  advanced    9.641728
2  9.397996    newbie    0.100000
3  9.399900    expert   19.654137