pandas 从多索引数据框中删除特定行
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/39238639/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Drop specific rows from multiindex Dataframe
提问by micyukcha
I have a multi-index dataframe that looks like this:
我有一个多索引数据框,如下所示:
start grad
1995-96 1995-96 15 15
1996-97 6 6
2002-03 1 1
2007-08 1 1
I'd like to drop by the specific values for the first level (level=0). In this case, I'd like to drop everything that has 1995-96 in the first index.
我想删除第一级(级别 = 0)的特定值。在这种情况下,我想删除第一个索引中包含 1995-96 的所有内容。
回答by Paul H
pandas.DataFrame.drop
takes level as an optional argument
pandas.DataFrame.drop
将 level 作为可选参数
df.drop('1995-96', level='start')
df.drop('1995-96', level='start')
As of v0.18.1, its docstring says:
从 v0.18.1 开始,它的文档字符串说:
""" Signature: df.drop(labels, axis=0, level=None, inplace=False, errors='raise') Docstring: Return new object with labels in requested axis removed. Parameters ---------- labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. .. versionadded:: 0.16.1 """
""" Signature: df.drop(labels, axis=0, level=None, inplace=False, errors='raise') Docstring: Return new object with labels in requested axis removed. Parameters ---------- labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. .. versionadded:: 0.16.1 """