Python 如何按键访问pandas groupby数据框

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/14734533/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 12:16:31  来源:igfitidea点击:

How to access pandas groupby dataframe by key

pythonpandasdataframegroup-bypandas-groupby

提问by beardc

How do I access the corresponding groupby dataframe in a groupby object by the key?

如何通过键访问 groupby 对象中相应的 groupby 数据帧?

With the following groupby:

使用以下 groupby:

rand = np.random.RandomState(1)
df = pd.DataFrame({'A': ['foo', 'bar'] * 3,
                   'B': rand.randn(6),
                   'C': rand.randint(0, 20, 6)})
gb = df.groupby(['A'])

I can iterate through it to get the keys and groups:

我可以遍历它以获取键和组:

In [11]: for k, gp in gb:
             print 'key=' + str(k)
             print gp
key=bar
     A         B   C
1  bar -0.611756  18
3  bar -1.072969  10
5  bar -2.301539  18
key=foo
     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14

I would like to be able to access a group by its key:

我希望能够通过其密钥访问组:

In [12]: gb['foo']
Out[12]:  
     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14

But when I try doing that with gb[('foo',)]I get this weird pandas.core.groupby.DataFrameGroupByobject thing which doesn't seem to have any methods that correspond to the DataFrame I want.

但是当我尝试这样做时,gb[('foo',)]我得到了这个奇怪的pandas.core.groupby.DataFrameGroupBy对象,它似乎没有任何与我想要的 DataFrame 相对应的方法。

The best I could think of is:

我能想到的最好的是:

In [13]: def gb_df_key(gb, key, orig_df):
             ix = gb.indices[key]
             return orig_df.ix[ix]

         gb_df_key(gb, 'foo', df)
Out[13]:
     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14  

but this is kind of nasty, considering how nice pandas usually is at these things.
What's the built-in way of doing this?

但这有点令人讨厌,考虑到熊猫通常在这些事情上有多好。
这样做的内置方式是什么?

采纳答案by Andy Hayden

You can use the get_groupmethod:

您可以使用以下get_group方法:

In [21]: gb.get_group('foo')
Out[21]: 
     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14

Note: This doesn't require creating an intermediary dictionary / copy of every subdataframe for every group, so will be much more memory-efficient that creating the naive dictionary with dict(iter(gb)). This is because it uses data-structures already available in the groupby object.

注意:这不需要为每个组创建一个中间字典/每个子数据帧的副本,因此与使用dict(iter(gb)). 这是因为它使用了 groupby 对象中已经可用的数据结构。



You can select different columns using the groupby slicing:

您可以使用 groupby 切片选择不同的列:

In [22]: gb[["A", "B"]].get_group("foo")
Out[22]:
     A         B
0  foo  1.624345
2  foo -0.528172
4  foo  0.865408

In [23]: gb["C"].get_group("foo")
Out[23]:
0     5
2    11
4    14
Name: C, dtype: int64

回答by JD Margulici

Wes McKinney (pandas' author) in Python for Data Analysis provides the following recipe:

用于数据分析的 Python 中的 Wes McKinney(pandas 的作者)提供了以下方法:

groups = dict(list(gb))

which returns a dictionary whose keys are your group labels and whose values are DataFrames, i.e.

它返回一个字典,其键是您的组标签,其值是 DataFrames,即

groups['foo']

will yield what you are looking for:

将产生您正在寻找的内容:

     A         B   C
0  foo  1.624345   5
2  foo -0.528172  11
4  foo  0.865408  14

回答by LegitMe

Rather than

而不是

gb.get_group('foo')

I prefer using gb.groups

我更喜欢使用 gb.groups

df.loc[gb.groups['foo']]

Because in this way you can choose multiple columns as well. for example:

因为通过这种方式您也可以选择多个列。例如:

df.loc[gb.groups['foo'],('A','B')]

回答by meyerson

I was looking for a way to sample a few members of the GroupBy obj - had to address the posted question to get this done.

我正在寻找一种方法来对 GroupBy obj 的几个成员进行采样 - 必须解决发布的问题才能完成这项工作。

create groupby object

创建 groupby 对象

grouped = df.groupby('some_key')

pick N dataframes and grab their indicies

选择 N 个数据帧并获取它们的索引

sampled_df_i  = random.sample(grouped.indicies, N)

grab the groups

抢组

df_list  = map(lambda df_i: grouped.get_group(df_i), sampled_df_i)

optionally - turn it all back into a single dataframe object

可选 - 将其全部转回单个数据帧对象

sampled_df = pd.concat(df_list, axis=0, join='outer')

回答by Surya

gb = df.groupby(['A'])

gb_groups = grouped_df.groups

If you are looking for selective groupby objects then, do: gb_groups.keys(), and input desired key into the following key_list..

如果您正在寻找选择性 groupby 对象,请执行以下操作:gb_groups.keys(),并将所需的键输入到以下 key_list..

gb_groups.keys()

key_list = [key1, key2, key3 and so on...]

for key, values in gb_groups.iteritems():
    if key in key_list:
        print df.ix[values], "\n"