Python 如何将熊猫 value_counts() 合并到数据帧或使用它来对数据帧进行子集化

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/35809098/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 16:59:19  来源:igfitidea点击:

How to merge pandas value_counts() to dataframe or use it to subset a dataframe

pythonpandas

提问by user2476665

I used pandas df.value_counts() to find the number of occurrences of particular brands. I want to merge those value counts with the respective brands in the initial dataframe.

我使用 pandas df.value_counts() 来查找特定品牌的出现次数。我想将这些值计数与初始数据框中的相应品牌合并。

 df has many columns including one named 'brands'
 brands = df.brands.value_counts()

 brand1   143
 brand2   21
 brand3   101
 etc.

How do I merge the value counts with the original dataframe such that each brand's corresponding count is in a new column, say "brand_count"?

我如何将值计数与原始数据框合并,以便每个品牌的相应计数都在一个新列中,比如“brand_count”?

Is it possible to assign headers to these columns; the names function won't work with series and I was unable to convert it to a dataframe to possibly merge the data that way. But, value_counts outputs a Series of dtype int64 (brand names should be type string) which means I cannot do the following:

是否可以为这些列分配标题;名称函数不适用于系列,我无法将其转换为数据框以可能以这种方式合并数据。但是,value_counts 输出一系列 dtype int64(品牌名称应该是字符串类型),这意味着我不能执行以下操作:

 df2 = pd.DataFrame({'brands': list(brands_all[0]), "brand_count":
 list(brands_all[1])})
 (merge with df)

Ultimately, I want to obtain this:

最终,我想获得这个:

 col1  col2  col3  brands  brand_count ... col150
                   A        30
                   C        140
                   A        30
                   B        111 

回答by MaxU

is that what you want:

那是你要的吗:

import numpy as np
import pandas as pd

# generating random DataFrame
brands_list = ['brand{}'.format(i) for i in range(10)]
a = pd.DataFrame({'brands': np.random.choice(brands_list, 100)})
b = pd.DataFrame(np.random.randint(0,10,size=(100, 3)), columns=list('ABC'))
df = pd.concat([a, b], axis=1)
print(df.head())

# generate 'brands' DF
brands = pd.DataFrame(df.brands.value_counts().reset_index())
brands.columns = ['brands', 'count']
print(brands)

# merge 'df' & 'brands_count'
merged = pd.merge(df, brands, on='brands')
print(merged)

PS first big part is just a dataframe generation.

PS 第一个重要部分只是数据帧生成。

The part which is interesting for you starts with the # generate 'brands'DF comment

你感兴趣的部分从# generate 'brands'DF 注释开始

回答by Alexander

You want to use transform.

您想使用transform.

import numpy as np
import pandas as pd

np.random.seed(0)

# Create dummy data.
df = pd.DataFrame({'brands': ['brand{0}'.format(n) 
                   for n in np.random.random_integers(0, 5, 10)]})

df['brand_count'] = \
    df.groupby('brands', as_index=False)['brands'].transform(lambda s: s.count())

>>> df
   brands brand_count
0  brand4           1
1  brand5           2
2  brand0           1
3  brand3           4
4  brand3           4
5  brand3           4
6  brand1           1
7  brand3           4
8  brand5           2
9  brand2           1

For reference:

以供参考:

>>> df.brands.value_counts()
brand3    4
brand5    2
brand4    1
brand0    1
brand1    1
brand2    1
Name: brands, dtype: int64

回答by Egos

i think the best way is to use map

我认为最好的方法是使用地图

df['brand_count']= df.brand.map(df.brand.value_counts())

this is so much faster than groupby method for example (factor 500 on a 15000 row df) and take only one line

例如,这比 groupby 方法快得多(15000 行 df 上的因子 500)并且只需要一行

回答by pomber

df = ...
key_col = "brand"
count_col = "brand_count"

result = (
    df.join(
        df[key_col].value_counts().rename(count_col), 
        how="left", 
        on=key_col)
)

If you need to join the counts to a different dataframe remember to fill NaNs with zeros:

如果您需要将计数加入不同的数据帧,请记住NaN用零填充s:

df = ...
other = ...
key_col = "brand"
count_col = "brand_count"

result = (
    other.join(
        df[key_col].value_counts().rename(count_col), 
        how="left", 
        on=key_col)
    .fillna({count_col: 0})
)

回答by Michael H.

Pandas DataFrame's merge and value_counts attributes are pretty fast, so I would combine the two.

Pandas DataFrame 的 merge 和 value_counts 属性非常快,所以我将两者结合起来。

df.merge(df['brand'].value_counts().to_frame(), how='left', left_on='brand',
         right_index=True, suffixes=('', 'x'))\
  .rename(columns={'brandx':'brand_count'})