pandas 使用 pd.read_json 读取 JSON 文件时出现 ValueError 错误

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/33559660/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 00:10:59  来源:igfitidea点击:

ValueError errors while reading JSON file with pd.read_json

pythonjsonpandas

提问by shantanuo

I am trying to read JSON file using pandas:

我正在尝试使用 Pandas 读取 JSON 文件:

import pandas as pd
df = pd.read_json('https://data.gov.in/node/305681/datastore/export/json')

I get ValueError: arrays must all be same length

我得到 ValueError: arrays must all be same length

Some other JSON pages show this error:

其他一些 JSON 页面显示此错误:

ValueError: Mixing dicts with non-Series may lead to ambiguous ordering.

How do I somehow read the values? I am not particular about data validity.

我如何以某种方式读取值?我并不特别关注数据有效性。

采纳答案by Andy Hayden

Looking at the json it is valid, but it's nested with data and fields:

查看 json 它是有效的,但它嵌套了数据和字段:

import json
import requests

In [11]: d = json.loads(requests.get('https://data.gov.in/node/305681/datastore/export/json').text)

In [12]: list(d.keys())
Out[12]: ['data', 'fields']

You want the data as the content, and fields as the column names:

您希望数据作为内容,字段作为列名:

In [13]: pd.DataFrame(d["data"], columns=[x["label"] for x in d["fields"]])
Out[13]:
   S. No.                   States/UTs    2008-09    2009-10    2010-11    2011-12    2012-13
0       1               Andhra Pradesh  183446.36  193958.45  201277.09  212103.27  222973.83
1       2            Arunachal Pradesh      360.5     380.15     407.42        419     438.69
2       3                        Assam    4658.93    4671.22    4707.31       4705    4709.58
3       4                        Bihar   10740.43   11001.77    7446.08       7552    8371.86
4       5                 Chhattisgarh    9737.92   10520.01   12454.34   12984.44   13704.06
5       6                          Goa     148.61        148        149     149.45     457.87
6       7                      Gujarat   12675.35   12761.98   13269.23   14269.19   14558.39
7       8                      Haryana   38149.81   38453.06   39644.17   41141.91   42342.66
8       9             Himachal Pradesh      977.3    1000.26    1020.62    1049.66    1069.39
9      10            Jammu and Kashmir    7208.26    7242.01    7725.19     6519.8    6715.41
10     11                    Jharkhand    3994.77    3924.73    4153.16    4313.22    4238.95
11     12                    Karnataka   23687.61    29094.3   30674.18   34698.77   36773.33
12     13                       Kerala   15094.54   16329.52   16856.02   17048.89   22375.28
13     14               Madhya Pradesh     6712.6    7075.48    7577.23    7971.53    8710.78
14     15                  Maharashtra   35502.28   38640.12    42245.1   43860.99   45661.07
15     16                      Manipur    1105.25       1119    1137.05    1149.17    1162.19
16     17                    Meghalaya     994.52     999.47    1010.77    1021.14    1028.18
17     18                      Mizoram     411.14     370.92     387.32     349.33     352.02
18     19                     Nagaland     831.92      833.5     802.03     703.65     617.98
19     20                       Odisha   19940.15   23193.01   23570.78   23006.87   23229.84
20     21                       Punjab    36789.7   32828.13   35449.01      36030   37911.01
21     22                    Rajasthan    6449.17    6713.38    6696.92    9605.43    10334.9
22     23                       Sikkim     136.51     136.07     139.83     146.24        146
23     24                   Tamil Nadu   88097.59  108475.73  115137.14  118518.45  119333.55
24     25                      Tripura    1388.41    1442.39    1569.45       1650    1565.17
25     26                Uttar Pradesh    10139.8   10596.17   10990.72   16075.42   17073.67
26     27                  Uttarakhand    1961.81    2535.77    2613.81    2711.96    3079.14
27     28                  West Bengal    33055.7   36977.96   39939.32   43432.71   47114.91
28     29  Andaman and Nicobar Islands     617.58     657.44     671.78        780     741.32
29     30                   Chandigarh     272.88     248.53     180.06     180.56     170.27
30     31       Dadra and Nagar Haveli      70.66      70.71      70.28         73         73
31     32                Daman and Diu      18.83       18.9      18.81      19.67         20
32     33                        Delhi       1.17       1.17       1.17       1.23         NA
33     34                  Lakshadweep     134.64     138.22     137.98     139.86     139.99
34     35                   Puducherry     111.69     112.84     113.53        116     112.89

See also json_normalizefor more complex json DataFrame extraction.

另请参阅json_normalize更复杂的 json DataFrame 提取。

回答by Akhil Gupta

The following listed both the key and value pair for me:

下面列出了我的键值对:

from urllib.request import urlopen
import json 
from pandas.io.json import json_normalize
import pandas as pd
import requests

df = json.loads(requests.get('https://api.github.com/repos/akkhil2012/MachineLearning').text)

data = pd.DataFrame.from_dict(df, orient='index')

print(data)

回答by AlexG

eht For this case we can make the dataframe by doing

eht 对于这种情况,我们可以通过做

import pandas as pd
df = pd.DataFrame(data["data"])